
www.manaraa.com

Automati Prediate Abstration of C ProgramsThomas Ball Rupak Majumdartball�mirosoft.om rupak�s.berkeley.eduMirosoft Researh U.C. BerkeleyTodd Millstein Sriram K. Rajamanitodd�s.washington.edu sriram�mirosoft.omUniv. of Washington Mirosoft Researhhttp://researh.mirosoft.om/slam/AbstratModel heking has been widely suessful in validating anddebugging designs in the hardware and protool domains.However, state-spae explosion limits the appliability ofmodel heking tools, so model hekers typially operateon abstrations of systems.Reently, there has been signi�ant interest in applyingmodel heking to software. For in�nite-state systems likesoftware, abstration is even more ritial. Tehniques forabstrating software are a prerequisite to making softwaremodel heking a reality.We present the �rst algorithm to automatially onstruta prediate abstration of programs written in an industrialprogramming language suh as C, and its implementation ina tool | C2bp. The C2bp tool is part of the SLAM toolkit,whih uses a ombination of prediate abstration, modelheking, symboli reasoning, and iterative re�nement tostatially hek temporal safety properties of programs.Prediate abstration of software has many appliations,inluding deteting program errors, synthesizing programinvariants, and improving the preision of program analy-ses through prediate sensitivity. We disuss our experieneapplying the C2bp prediate abstration tool to a varietyof problems, ranging from heking that list-manipulatingode preserves heap invariants to �nding errors in WindowsNT devie drivers.1 IntrodutionIn the hardware and protool domains, model heking hasbeen used to validate and debug systems by algorithmi ex-ploration of their state spaes. State-spae explosion is amajor limitation, and typially model hekers explore thestate spae of an abstrated system. For software, whihPermission to make digital or hard opies of all or part ofthis work for personal or lassroom use is granted withoutfee provided that opies are not made or distributed forpro�t or ommerial advantage and that opies bear thisnotie and the full itation on the �rst page. To opy oth-erwise, to republish, to post on servers or to redistributeto lists, requires prior spei� permission and/or a fee.PLDI 2001, Snowbird, Utah, USA.Copyright 2001 ACM 0-89791-88-6/97/05...$5.00

is typially in�nite-state, abstration is even more ritial.Any e�ort to model hek software must �rst onstrut anabstrat model of the software.A promising approah to onstrut abstrations auto-matially, alled prediate abstration, was �rst proposed byGraf and Sa��di [19℄. With prediate abstration, the on-rete states of a system are mapped to abstrat states a-ording to their evaluation under a �nite set of prediates.Automati prediate abstration algorithms have been de-signed and implemented before for �nite-state systems andfor in�nite-state systems spei�ed as guarded ommands.However, no one has demonstrated automati prediate ab-stration on a programming language suh as C.We present a tool alled C2bp that performs automatiprediate abstration of C programs. Given a C programP and a set E of prediates (pure C boolean expressionsontaining no funtion alls), C2bp automatially reates aboolean program BP(P;E), whih is an abstration of P . Aboolean program is essentially a C program in whih the onlytype available is boolean (the boolean program language hassome additional onstruts that will be presented later). Theboolean program has the same ontrol-ow struture as Pbut ontains only jEj boolean variables, eah representing aprediate in E. For example, if the prediate (x < y) is inE, where x and y are integer variables in P , then there isa boolean variable in BP(P;E) whose truth at a programpoint p implies that (x < y) is true at p in P . For eahstatement s of P , C2bp automatially onstruts the or-responding boolean transfer funtions that onservativelyrepresent the e�et of s on the prediates in E. The re-sulting boolean program an be analyzed preisely using atool alled Bebop [5℄ that performs interproedural dataowanalysis [31, 28℄ using binary deision diagrams.We present the details of the C2bp algorithm, as wellas results from applying C2bp to a variety of problems andprograms:� We have applied C2bp and Bebop to pointer-manipulating programs to identify invariants involvingpointers. In one example, these invariants lead to morepreise aliasing information than is possible with a ow-sensitive alias analysis. In another example, we showthat list-manipulating ode preserves various struturalproperties of the heap, as has been done with shapeanalysis [30℄. This is noteworthy beause our prediate

www.manaraa.com

language is a quanti�er-free logi, rather than the morepowerful logi of [30℄.� We have applied C2bp and Bebop to examples fromNeula's work on proof-arrying ode [26℄ to automati-ally identify loop invariants in these examples that thePCC ompiler was required to generate.� We have used C2bp in the SLAM toolkit to hek tem-poral safety properties of Windows NT devie drivers.The SLAM toolkit uses C2bp and Bebop to statiallydetermine whether or not an assertion violation antake plae in C ode. A unique part of the toolkit is itsuse of a demand-driven iterative proess to automati-ally �nd prediates that are relevant to the partiularassertion under examination. When the urrent set ofprediates and the boolean program abstration thatit indues are insuÆient to show that an assertiondoes/doesn't fail, new prediates are found to re�nethe abstration. Although the SLAM proess may notonverge in theory, due to the undeidability of the as-sertion violation problem, it has onverged on all NTdevie drivers we have analyzed (even though they on-tain loops).For a detailed proof of soundness of the abstration al-gorithm presented in this paper, the interested reader is re-ferred to our tehnial report [3℄. In work with AndreasPodelski [4℄ we have used the framework of abstration in-terpretation to formalize the preision of the C2bp algo-rithm for single proedure programs with no pointers. Se-tion 4.6 reviews the soundness theorem for C2bp that wehave proved and desribes our preision results.The rest of this paper is organized as follows. Se-tion 2 gives an example of applying C2bp to a pointer-manipulating C proedure. Setion 3 lists the hallenges inperforming prediate abstration on C programs. Setion 4desribes our prediate abstration algorithm in detail. Se-tion 5 desribes extensions and optimizations to the C2bptool. Setion 6 presents results on applying the C2bp toolto a variety of C programs. Setion 7 reviews related workand Setion 8 onludes the paper.2 Example: Invariant Detetion in Pointer-manipulating ProgramsThis setion presents the appliation of C2bp and the Be-bop model heker to a pointer-manipulating proedure.The ombination of the two tools determines program-point-spei� invariants about the proedure, whih an be usedto re�ne pointer aliasing information.2.1 C2bpConsider the partition funtion of Figure 1(a). This pro-edure takes a pointer to a list of integers l and an integerv and partitions the list into two lists: one ontaining theells with value greater than v (returned by the funtion)and the other ontaining the ells with value less than orequal to v (the original list, destrutively updated).We input the program in Figure 1(a) along with the fol-lowing prediate input �le to C2bp:partition {urr == NULL,prev == NULL,

urr->val > v,prev->val > v}The prediate input �le spei�es a set of four prediates,loal to the proedure partition. Figure 1(b) shows theboolean program resulting from the abstration of the pro-edure partition with respet to these prediates.1 Theboolean program delares four variables of type bool in pro-edure partition, eah orresponding to one of the fourprediates from the prediate input �le.2 The variables' ini-tial values are unonstrained.The boolean program is guaranteed to be an abstrationof the C program in the following sense: any feasible exe-ution path of the C program is a feasible exeution pathof the boolean program. Of ourse, there may be feasibleexeution paths of the boolean program that are infeasiblein the C program. Suh paths an lead to impreision insubsequent model heking.We now informally desribe how the C2bp tool translateseah statement of the C program into a orresponding set ofstatements in the boolean program. An assignment state-ment in the C program is translated to a set of assignmentsthat apture the e�et of the original assignment statementon the input prediates. For example, the assignment state-ment \prev=NULL;" in the C program is translated to twoassignment statements in the boolean program. The �rst,\fprev==NULLg=true;", reets the truth of the prediate(prev = NULL) after the assignment. The value of theprediate (prev ! val > v) is unde�ned after this assign-ment and is thus invalidated by the assignment statement\fprev->val>vg = unknown();". The unknown funtion isde�ned as:bool unknown() {if (*) { return true; }else { return false; }}The unknown funtion uses the ontrol expression *", whihnon-deterministially hooses the then or the else branh,to return either true or false.The C2bp tool determines that the other two predi-ates are una�eted by the assignment \prev=NULL;", sothey need not be updated. The C2bp tool uses a ow-insensitive points-to analysis [12℄ to resolve aliases betweenpointers. In this program, sine none of the pointer variablesin the set f urr, prev, next, newl g has its address taken,none of these variables an be aliased by any other expres-sion in the proedure. As a result, C2bp resolves that theonly prediates that the assignment \prev=NULL;" a�etsare (prev = NULL) and (prev ! val > v).As another example, the assignment \prev=urr;" isalso abstrated to assignments to the two prediates in-volving prev. These prediates are assigned the values ofthe orresponding prediates on urr, as expeted. Finally,C2bp determines that the assignment \newl=NULL;" annota�et any of the four input prediates, so the assignmentis translated to the skip statement, the boolean program's\no-op".In the above examples, most of the input prediatesare updated aurately. For example, the assignment1The boolean program shown is not the exat output of C2bp| ithas been simpli�ed to aid readability.2In boolean programs, variable identi�ers an be regular C identi-�ers or an arbitrary string enlosed between \f" and \g".

www.manaraa.com

typedef strut ell {int val;strut ell* next;} *list;list partition(list *l, int v) {list urr, prev, newl, nextCurr;urr = *l;prev = NULL;newl = NULL;while (urr != NULL) {nextCurr = urr->next;if (urr->val > v) {if (prev != NULL) {prev->next = nextCurr;}if (urr == *l) {*l = nextCurr;}urr->next = newl;L: newl = urr;} else {prev = urr;}urr = nextCurr;}return newl;}

void partition() {bool {urr==NULL}, {prev==NULL};bool {urr->val>v}, {prev->val>v};{urr==NULL} = unknown(); // urr = *l;{urr->val>v} = unknown();{prev==NULL} = true; // prev = NULL;{prev->val>v} = unknown();skip; // newl = NULL;while(*) { // while(urr!=NULL)assume(!{urr==NULL}); //skip; // nextCurr = urr->nextif (*) { // if (urr->val > v) {assume({urr->val>v}); //if (*) { // if (prev != NULL) {assume(!{prev==NULL}); //skip; // prev->next = nextCurr;} // }if (*) { // if (urr == *l) {skip; // *l = nextCurr;} // }skip; // urr->next = newl;L: skip; // newl = urr} else { // } else {assume(!{urr->val>v}); //{prev==NULL} = {urr==NULL}; // prev = urr;{prev->val>v} = {urr->val>v}; //} // }{urr==NULL} = unknown(); // urr = nextCurr;{urr->val>v} = unknown();}assume({urr==NULL});}(a) (b)Figure 1: (a) List partition example; (b) The boolean program of the list partition example, abstrated with respet to theset of input prediates f urr==NULL, prev==NULL, urr->val > v, prev->val > v g. The unknown funtion is used togenerate the value true or false non-deterministially (see body text for an explanation).\fprev==NULLg=furr==NULLg;" in the boolean programexatly represents the e�et of the assignment \prev=urr"on the prediate (prev = NULL). However, it is possi-ble for suh exat information to be unavailable, beausesome of the neessary prediates have not been input toC2bp. In that ase, we must replae exat informationwith a onservative approximation. For example, the as-signment \urr=nextCurr;" an a�et the two prediatesinvolving urr. However, beause there are no prediatesabout nextCurr in the prediate input �le, there is no wayto dedue the orret truth value of these prediates. Thisrepresents a worst ase of sorts, as the input prediates pro-vide absolutely no information about the appropriate truthvalues for the two prediates to be updated. As a result, thetwo prediates are \invalidated" using the unknown funtion,as de�ned above.The C2bp tool translates onditional statements in theC program into non-deterministi onditional statementsin the boolean program, using the ontrol expression *".However, it also inserts \assume" statements to apture thesemantis of onditionals with respet to the input pred-iates. For example, the �rst statement inside the whileloop is \assume(!furr==NULLg);". The assume ats as a�lter on the state spae of the boolean program: in thisase, it is impossible to reah the program point after theassume if the variable furr==NULLg is true. In this way, wefaithfully model the guard of the original while loop.

2.2 BebopThe boolean program output by C2bp is input to the Be-bop model heker [5℄, whih omputes the set of reahablestates for eah statement of a boolean program using aninterproedural dataow analysis algorithm in the spirit ofSharir-Pnueli and Reps-Horwitz-Sagiv [31, 28℄. A state ofa boolean program at a statement s is simply a valuationto the boolean variables that are in sope at statement s(in other words, a bit vetor, with one bit for eah variablein sope). The set of reahable states (or invariant) of aboolean program at s is thus a set of bit vetors (equiva-lently, a boolean funtion over the set of variables in sopeat s).Bebop di�ers from typial implementations of dataowalgorithms in two ruial ways. First, it omputes over setsof bit vetors at eah statement rather than single bit ve-tors. This is neessary to apture orrelations between vari-ables. Seond, it uses binary deision diagrams [9℄ (BDDs)to impliitly represent the set of reahable states of a pro-gram, as well as the transfer funtions for eah statementin a boolean program. However, Bebop uses an expliitontrol-ow graph representation, as in a ompiler, ratherthan enoding the ontrol-ow with BDDs, as done in mostsymboli model hekers.For our example, Bebop outputs the following invariantrepresenting the reahable states at label L of the boolean

www.manaraa.com

program: (urr 6= NULL) ^ (urr ! val > v) ^((prev ! val � v) _ (prev = NULL))Beause C2bp is sound, this boolean funtion is also aninvariant over the state of the C program at label L.Suh invariants an be used for many di�erent purposes;we give several examples in Setion 6. One interesting us-age of the above invariant is to re�ne alias information. Inpartiular, the invariant implies that *prev and *urr arenever aliases at label L in the proedure partition. In otherwords, variables prev and urr never point to the samememory loation at label L. This an be seen as follows:� If (prev = NULL), then (prev 6= urr) beause(urr 6= NULL).� If (prev 6= NULL), then sine (urr ! val > v) and(prev ! val � v), it follows that (prev ! val 6=urr ! val), whih implies (prev 6= urr).3This fat an be dedued automatially from the given in-variant. In partiular, a deision proedure an determinethat the invariant implies (prev 6= urr). In this way, we anautomatially re�ne an existing alias analysis. Traditionalow-sensitive alias analyses would not disover that *prevand *urr are not aliases at label L, sine suh analyses donot use the values of �elds (suh as prev->val) to eliminatepossible aliasing relationships.2.3 SummaryWe have shown how C2bp is used to ompute a booleanprogram that is a sound abstration of a C program withrespet to a set of prediates E. Subsequent model hekingof the boolean program an disover strong invariants thatare expressed as boolean funtions over the prediates in E.3 The Challenges of Prediate Abstration for CThe omplexities of a programming language like C givesrise to several tehnial hallenges in performing prediateabstration:� Pointers. There are two losely related subprob-lems in dealing with pointers: (1) assignments throughdereferened pointers in the original C program, and(2) pointers and pointer dereferenes in the prediatesover whih the abstration is omputed. We handle thetwo ases in a uniform manner and desribe how to usepoints-to analysis [12℄ to improve the preision of ourabstration.� Proedures. Programs with proedures are handledby allowing proedural abstration in the target lan-guage [5℄. In partiular, boolean programs have globalvariables, proedures with loal variables, and all-by-value parameter passing. Having expliit proeduresallows us to make both abstration and analysis moreeÆient by exploiting proedural abstration present inthe C program. It also allows us to handle reursive and3Here we use the ontrapositive of the rule usually applied inuni�ation-based alias analysis: (p = q)) (�p = �q). That is,(�p 6= �q)) (p 6= q).

mutually reursive proedures with no additional meh-anism. This di�ers from most other approahes to soft-ware model heking, whih inline proedure alls [10℄.In the following setion, we desribe a modular abstra-tion proess for proedures: eah proedure an be ab-strated given only the signatures of the abstrationsof its allees, and suh signatures an be onstrutedfor eah proedure in isolation.� Proedure alls. The abstration proess for proe-dure alls is hallenging, partiularly in the presene ofpointers. After a all, the aller must onservativelyupdate loal state that may have been modi�ed by theallee. We provide a sound and preise approah toabstrating proedure alls that takes suh side-e�etsinto aount.� Unknown values. It is not always possible to deter-mine the e�et of a statement in the C program on aprediate, in terms of the input prediate set E. Wedeal with suh non-determinism diretly in the booleanprogram via the non-deterministi ontrol expression*", whih allows us to impliitly express a three-valueddomain for boolean variables.� Preision-eÆieny tradeo�. Computing the ab-strat transfer funtion for eah statement in the Cprogram with respet to the set E of prediates mayrequire the use of a theorem prover. Obtaining a pre-ise abstrat transfer funtion requires O(2jEj) alls tothe theorem prover, in the worst ase. We have ex-plored several optimization tehniques to redue thenumber of alls made to the theorem prover. Some ofthese tehniques result in an equivalent boolean pro-gram, while others trade o� preision for omputationspeed.4 Prediate AbstrationThis setion desribes the design and implementation ofC2bp in detail. Given a C program P and a set E =f'1; '2; : : : ; 'ng of pure boolean C expressions over thevariables of P and onstants of the C language, C2bp au-tomatially onstruts an abstration of P with respetto E [19℄. This abstration is represented as a booleanprogram BP(P;E), whih is a program that has identi-al ontrol struture to P but ontains only boolean vari-ables. In partiular, BP(P;E) ontains n boolean variablesV = fb1; b2; : : : ; bng, where eah boolean variable bi repre-sents the prediate 'i (1 � i � n). As desribed in Se-tion 4.6, BP(P;E) is guaranteed to be an abstration of Pin that the set of exeution traes of BP(P;E) is a supersetof the set of exeution traes of P .Our tool handles all syntati onstruts of the C lan-guage, inluding pointers, strutures, and proedures. Itsmain limitation is that it uses a logial model of memorywhen analyzing C programs. That is, it models the expres-sion p+i, where p is a pointer and i is an integer, as yieldinga pointer value that points to the objet pointed to by p.In the sequel, we assume that the C program has beenonverted into a simple intermediate form in whih: (1) allintraproedural ontrol-ow is aomplished with if-then-else statements and gotos; (2) all expressions are free ofside-e�ets and short-iruit evaluation and do not ontainmultiple dereferenes of a pointer (e.g., **p); (3) a funtion

www.manaraa.com

all only ours at the top-most level of an expression (forexample, \z=x+f(y);" is replaed by \t=f(y); z=x+t;").4.1 Weakest Preonditions and CubesFor a statement s and a prediate ', let WP (s; ') denotethe weakest liberal preondition [16, 20℄ of ' with respet tostatement s. WP (s;') is de�ned as the weakest prediatewhose truth before s entails the truth of ' after s terminates(if it terminates). Let \x = e" be an assignment, where xis a salar variable and e is an expression of the appropriatetype. Let ' be a prediate. By de�nition WP (x = e; ') is' with all ourrenes of x replaed with e, denoted '[e=x℄.For example:WP (x=x+1; x < 5) = (x+ 1) < 5 = (x < 4)The weakest preondition omputation is entral to theprediate abstration proess. Suppose statement s oursbetween program points p and p0. If ' is a prediate inE with orresponding boolean variable b then it is safe toassign b the value true in BP(P;E) between program pointsp and p0 if the boolean variable b0 orresponding toWP (s; ')is true at program point p. However, no suh variable b0may exist if WP (s; ') is not in E. For example, supposeE = f(x < 5); (x = 2)g. We have seen that WP (x=x+1; x <5) = (x < 4), but the prediate (x < 4) is not in E. In thisase, C2bp uses deision proedures (i.e., a theorem prover)to strengthen the weakest preondition to an expression overthe prediates in E. In our example, we an show that(x = 2)) (x < 4). Therefore if (x = 2) is true before\x=x+1;", then (x < 5) is true afterwards.We formalize this strengthening of a prediate as follows.A ube over V is a onjuntion i1 ^ : : : ^ ik , where eahij 2 fbij ;:bij g for some bij 2 V . For a variable bi 2V , let E(bi) denote the orresponding prediate 'i, and letE(:bi) denote the prediate :'i. Extend E to ubes anddisjuntions of ubes in the natural way. For any prediate 'and set of boolean variables V , let FV (') denote the largestdisjuntion of ubes over V suh that E() implies '. Theprediate E(FV (')) represents the weakest prediate overE(V) that implies '. In our example, E(FV (x < 4)) = (x =2). It will also be useful to de�ne a orresponding weakeningof a prediate. De�ne GV (') as :FV (:'). The prediateE(GV (')) represents the strongest prediate over E(V) thatis implied by '.For eah ube, the impliation hek involves a all toa theorem prover implementing the required deision pro-edures. Our implementation of C2bp uses two theoremprovers: Simplify [15℄ and Vampyre [7℄, both Nelson-Oppenstyle provers [27℄. A naive omputation of FV (�) and GV (�)requires exponentially many alls to the theorem prover inthe worst ase. Setion 5 desribes several optimizationsthat make the FV and GV omputations pratial.4.2 Pointers and aliasingIn the presene of pointers, WP (x=e; ') is not neessarily'[e=x℄. As an example, WP (x = 3; �p > 5) is not (�p > 5)beause if x and �p are aliases, then (�p > 5) annot betrue after the assignment to x. A similar problem ourswhen a pointer dereferene is on the left-hand side of theassignment.To handle these problems, we adapt Morris' general ax-iom of assignment [25℄. A loation is either a variable, a

int bar(int* q, int y) { bar {int l1, l2; y >= 0,... *q <= y,return l1; y == l1,} y > l2}void foo(int* p, int x) { foo {int r; *p <= 0,if (*p <= x) x == 0,*p = x; r == 0else }*p = *p + x;r = bar(p, x);...}Figure 2: An example input to C2bp. On the left are twosimple C proedures (bar is not shown in its entirety). Onthe right is the set of prediates to model.struture �eld aess from a loation, or a dereferene of aloation. Consider the omputation of WP (x=e; '), wherex is a loation, and let y be a loation mentioned in theprediate '. Then there are two ases to onsider: either xand y are aliases, and hene the assignment of e to x willause the value of y to beome e; or they are not aliases,and the assignment to x leaves y unhanged. De�ne'[x; e; y℄ = (&x = &y ^ '[e=y℄)_(&x 6= &y ^ ')Let y1; y2; : : : ; yn be the loations mentioned in '. ThenWP (x=e; ') is de�ned to be '[x; e; y1℄[x; e; y2℄ : : : [x; e; yn℄.In the example above, we haveWP (x = 3; �p > 5) =(&x = p ^ 3 > 5) _ (&x 6= p ^ �p > 5)In the absene of alias information, if the prediate ' has kloations ourring in it, the weakest preondition will have2k syntati disjunts, eah disjunt onsidering a possiblealias senario of the k loations with x. C2bp uses a pointeranalysis to improve the preision of the weakest preondi-tion omputation. If the pointer analysis says that x andy annot be aliased at the program point before x=e, thenwe an prune the disjunts representing a senario where xis aliased to y, and we an partially evaluate the disjuntsrepresenting a senario where x is not aliased to y. This hasthe e�et of improving the preision of the resulting booleanprogram BP(P;E) produed by C2bp. Our implementationuses Das's points-to algorithm [12℄ to obtain ow-insensitive,ontext-insensitive may-alias information.4.3 Prediate Abstration of AssignmentsConsider an assignment statement \x = e;" at label ` inP . The boolean program BP(P; E) produed by C2bp willontain at label ` a parallel assignment to the boolean vari-ables in sope at `. A boolean variable bi in BP(P;E) anhave the value true after ` if FV (WP (x = e; 'i)) holdsbefore `. Similarly, bi an have the value false after ` ifFV (WP (x = e;:'i)) holds before `. Note that these twoprediates annot be simultaneously true. Finally, if nei-ther of these prediates holds before `, then bi should be set

www.manaraa.com

non-deterministially. This an happen beause the predi-ates in E are not strong enough to provide the appropriateinformation, or beause the theorem prover is inomplete.Therefore, BP(P;E) ontains the following parallel assign-ment at label `:b1; : : : ; bn =hoose(FV (WP (x=e; '1));FV (WP (x=e;:'1)));: : : ;hoose(FV (WP (x=e; 'n));FV (WP (x=e;:'n)))where the hoose funtion is always part of BP(P;E) andis de�ned as follows:bool hoose(bool pos, bool neg) {if (pos) { return true; }if (neg) { return false; }return unknown();}For example, onsider abstrating the statement *p=*p+x"in proedure foo of Figure 2 with respet to the threeprediates delared to be loal to foo. Let us all thisstatement s. In this example, a may-alias analysis revealsthat �p annot alias x or r. The weakest preonditionWP (s; �p � 0) is (�p + x) � 0, sine *p annot alias x.We have E(FV (�p + x � 0)) = (�p � 0) ^ (x = 0).Similarly, WP (s;:(�p � 0)) is :((�p + x) � 0), andE(FV (:(�p + x � 0))) = :(�p � 0) ^ (x = 0). Theweakest preonditions of s with respet to the prediates(x = 0) and (r = 0) are the respetive prediates them-selves, sine �p annot alias x or r. Thus, BP(P;E) willontain the following statement in plae of the given assign-ment statement, where we use feg to denote the booleanvariable representing prediate e:{*p<=0}, {x==0}, {r==0} =hoose({*p<=0} && {x==0}, !{*p<=0} && {x==0}),hoose({x==0} , !{x==0}),hoose({r==0} , !{r==0});Note that the abstration proess for assignment state-ments is based on weakest preondition omputations thatare loal to eah assignment and an be omputed by apurely syntati manipulation of prediates. C2bp does notompute ompositions of weakest preonditions over pathswith omplex ontrol ow. In partiular, C2bp does not re-quire programs to be annotated with funtion pre- or post-onditions, or with loop invariants.4.4 Prediate Abstration of Gotos and Condition-alsEvery goto statement in the C program is simply opied tothe boolean program.Translating onditionals is more involved. Consider someonditional if (') f...g else f...g in program P . At thebeginning of the then branh in P , the prediate ' holds.Therefore, at the beginning of the then branh in the or-responding onditional in BP(P;E), the ondition GV (') isknown to hold. Similarly, at the beginning of the else branhin P , we know that :' holds, so GV (:') is known to hold atthat program point in BP(P;E). Therefore, BP(P;E) willontain the following abstration of the above onditional:if(�)fassume(GV ('))

: : :gelsefassume(GV (:')): : :gNote that the test in the abstrated onditional is �, so bothpaths through the onditional are possible. Within the thenand else branhes, we use the assume statement to retainthe semantis of the original onditional test. The assumestatement is the dual of assert: assume(') never fails. Exe-utions on whih ' does not hold at the point of the assumeare simply ignored [16℄.As an example, onsider the onditional in proedure fooof Figure 2. The abstration of this onditional with respetto the three prediates loal to foo is:if (�) f // if (*p <= x)assume (fx == 0g =) f*p <= 0g);: : :g else fassume (fx == 0g =) !f*p <= 0g);: : :g4.5 Prediate Abstration of Proedure CallsWe now desribe how C2bp handles multi-proedure pro-grams.4.5.1 NotationReall that the input to C2bp is the program P and a set Eof prediates. Let GP be the global variables of the programP . Eah prediate in E is annotated as being either globalto BP(P;E) or loal to a partiular proedure in BP(P;E)(see Figure 2, in whih prediates are loal to bar or foo{ there are no global prediates in this example), therebydetermining the sope of the orresponding boolean vari-able in BP(P;E). A global prediate an refer only to vari-ables in GP . Let EG denote the global prediates of E andlet VG denote the orresponding global boolean variables ofBP(P;E).For a proedure R, let ER denote the subset of prediatesin E that are loal to R, and let VR denote the orrespondingloal boolean variables of R in BP(P;E). In the following,we do not distinguish between a boolean variable b and itsorresponding prediate E(b) when unambiguous from theontext (that is, in the ontext of BP(P;E) we always meanb and in the ontext of P we always mean E(b)). Let FRbe the formal parameters of R, and let LR be the loalvariables of R. Let r 2 LR [FR be the return variable of R(we assume, without loss of generality, that there is only onereturn statement in R, and it has the form \return r").Let vars(e) be the set of variables referened in expres-sion e. Let drfs(e) be the set of variables dereferened inexpression e.4.5.2 Determining signaturesA key feature of our approah is modularity: eah proe-dure an be abstrated by C2bp given only the signaturesof proedures that it alls. The signature of proedure Ran be determined in isolation from the rest of the program,given ER. C2bp operates in two passes. In the �rst passit determines the signature of eah proedure. It uses these

www.manaraa.com

signatures to abstrat proedure alls (along with all otherstatements) in the seond pass.Let R be a proedure in P and let R0 be its abstrationin BP(P;E). The signature of proedure R is a four-tuple(FR; r;Ef ; Er), where:� FR is the set of formal parameters of R,� r is the return variable of R,� Ef is the set of formal parameter prediates of R0, de-�ned as fe 2 ER j vars(e) \ LR = ;g, and� Er is the set of return prediates of R0, de�ned as:fe 2 ER j (r 2 vars(e) ^ (vars(e) n frg \ LR = ;))_(e 2 Ef^ (vars(e) \GP 6= ;_drfs(e) \ FR 6= ;))g:Ef is the set of formal parameter prediates of R0. Thisis the subset of prediates in ER that do not refer to any lo-al variables of R. All prediates in ER�Ef will be loals ofR0. Er is the set of prediates to be returned by R0 (booleanprograms allow proedures to have multiple return values).Suh return prediates serve two purposes. One is to pro-vide allers with information about r, the return value ofR. The other purpose is to provide allers with informationabout any global variables and all-by-referene parameters,so that loal prediates of allers an be updated preisely.To handle the �rst onern, Er ontains those prediates inER that mention r but do not mention any (other) loalsof R in P , as allers will not know about these loals. Tohandle the seond onern, Er ontains those prediates inEf that referene a global variable or dereferene a formalparameter of R.As an example, onsider proedure bar in Figure 2. Inthe signature of bar, Ef is f�q � y; y � 0g and Er is fy =l1; �q � yg.4.5.3 Handling proedure allsConsider a all v = R(a1; : : : ; aj) to proedure R at label` of some proedure S in P . The abstration BP(P;E)ontains a all to R0 at label `. Let the signature of R be(FR; r;Ef ; Er). For eah formal parameter prediate e 2 Ef ,C2bp omputes an atual value to pass into the all. Lete0 = e[a1=f1; a2=f2; : : : ; aj=fj ℄where FR = ff1; f2; : : : ; fjg. The expression e0 representsthe prediate e translated to the alling ontext. The atualparameter omputed for the formal e ishoose(FVS[VG(e0);FVS[VG (:e0)).We now explain how C2bp handles the return valuesfrom the all to R0. Assume Er = fe1; : : : ; epg. C2bp re-ates p fresh loal variables T = ft1; : : : ; tpg in proedure S0and assigns to them, in parallel, the return values of R0:t1; : : : ; tp = R0(: : :);The �nal step is to update eah loal prediate of S whosevalue may have hanged as a result of the all. Any predi-ate in ES that mentions v must be updated. In addition,we must update any prediate in ES that mentions a globalvariable, a (possibly transitive) dereferene of an atual pa-rameter to the all, or an alias of either of these kinds of

loations. C2bp uses the pointer alias analysis to determinea onservative over-approximation Eu to this set of predi-ates to update.Let E0 = (ES[EG)�Eu. The prediates inE0 along withthe prediates in Er are used to update the prediates inEu. Let V 0 � VS [VG be the boolean variables in BP(P;E)orresponding to E0.First C2bp translates the prediates in Er to the allingontext. In partiular, for eah ei 2 Er, lete0i = ei[v=r; a1=f1; a2=f2; : : : ; aj=fj ℄and let E0r = fe01; : : : ; e0pg.4 De�ne E(ti) = e0i, for eahti 2 T . For eah e 2 Eu, the orresponding boolean variableb 2 VS is assigned the following value:hoose(FV 0[T (e); FV 0[T (:e)).For example, onsider the all \bar(p,x)" in Figure 2.Reall that in the signature of bar, the formal parameterprediates (Ef) are f�q � y; y � 0g and the return predi-ates (Er) are fy = l1; �q � yg. The abstration of this allin the boolean program is as follows:prm1 = hoose({*p<=0}&&{x==0}, // for formal {*q<=y}!{*p<=0}&&{x==0});prm2 = hoose({x==0}, false); // for formal {y>=0}t1, t2 = bar(prm1, prm2); // t1 for {*q<=y}// t2 for {y==l1}{*p<=0} = hoose(t1&&{x==0}, !t1&&{x==0});{r==0} = hoose(t2&&{x==0}, !t2&&{x==0};4.6 Formal propertiesWe give two properties that relate P and BP(P; E). The�rst property, soundness, states that B is an abstrationof P |every feasible path in P is feasible in B as well.Sine a boolean program that allows all paths to be feasibleis sound as well, we also need to state the sense in whihB is preise. We do that via the terminology of abstratinterpretation [11℄.Soundness. For any path p feasible in P , it is guaranteedthat p is feasible in BP(P;E) as well. Further, if
 is thestate of the C program P after exeuting path p, then thereexists an exeution of p in the boolean program B ending ina state � suh that for every 1 � i � n, 'i holds in
 i� biis true in �. A proof of the soundness of C2bp an be foundin [3℄.Preision. The framework of abstrat interpretation anbe used to speify abstrations delaratively. A boolean ab-stration maps onrete states to abstrat states aordingto their evaluation under a �nite set of prediates. A arte-sian abstration maps a set of boolean vetors to a three-valued vetor obtained by ignoring dependenies betweenthe omponents of the vetors (see, for example, the workon set-based analysis [21℄). For example, the set of booleanvetors f(0; 1); (1; 0)g is mapped by the artesian abstra-tion to the three-valued vetor (?; ?), where ? represents the\don't know" value. For single proedures without pointers,4For simpliity, we assume that eah formal still refers to the samevalue as its orresponding atual at the end of the all. This an beheked using a standard modi�ation side-e�et analysis [24℄. If aformal annot be proven to refer to the same value as its orrespond-ing atual at the end of the all, then any prediates that mentionthe formal must be removed from Er in the signature of R.

www.manaraa.com

the abstration omputed by C2bp is equivalent to a om-position of the boolean and artesian abstrations [4℄. Weimprove preision by using disjuntive ompletion and fousoperations, both of whih are implemented in Bebop usingBDDs [4℄.5 ExtensionsThis setion desribes various tehniques we have applied toinrease the preision and eÆieny of C2bp.5.1 The enfore onstrutOften the prediates in E are orrelated in some way. Forexample, onsider the prediates (x = 1) and (x = 2). Thesemantis assoiated with these prediates forbids the pred-iates from being simultaneously true. However, when weuse uninterpreted boolean variables b1 and b2 for the pred-iates in BP(P;E), we do not prelude an exeution of theboolean program in whih both variables evaluate true insome state. In order to rule out abstrat exeutions ontain-ing suh spurious situations, we add an enfore onstrut toboolean programs: the statement enfore � in a proedurehas the e�et of putting assume � between every statementin the proedure. This ensures that � is a data invariantmaintained throughout the proedure's exeution. We om-pute � for eah proedure R simply as FVR[VG(false). Forexample, given only prediates (x = 1) and (x = 2), E(�) is:((x = 1) ^ (x = 2)).5.2 OptimizationsThe method desribed above for onstruting abstrat mod-els of C programs is impratial without several importantoptimizations. Pro�ling shows that the running time ofC2bp is dominated by the ost of theorem proving, as we aremaking an exponential number of alls to the prover at eahprogram point. Therefore, our optimization e�orts have fo-used on utting down the number of alls to the theoremprover.First, when omputing FV ('), ubes are onsidered ininreasing order by length. If a ube is shown to imply ',then we know that any ube that ontains as a subset willalso imply ', is redundant with , and an therefore be safelypruned. In this way, the F omputation atually produesa disjuntion of only the prime impliants of FV ('). If aube does not imply ' but it implies :', then any ubethat ontains as a subset also will not imply ', and antherefore be safely pruned.Seond, for every assignment statement, rather than up-dating the values of every boolean variable in sope, we donot update those variables whose truth value will de�nitelynot hange as a result of the assignment. The truth valueof a variable b will de�nitely not hange as a result of anassignment x=e if WP (x=e; E(b)) = E(b).Third, for eah omputation FV ('), we perform an anal-ysis to produe a set V 0 � V , suh that E(V 0) ontains allprediates from E(V) that an possibly be part of a ubethat implies '. Therefore, FV (') an safely be replaed byFV 0('), reduing the number of ubes to explore. This setV 0 is determined by a syntati one-of-inuene omputa-tion. Starting with an empty set E0 we �nd prediates inE(V) that mention a loation or an alias of a loation in ',add these prediates to E0, determine the set of loationsmentioned in these prediates, and iterate until reahing a

program lines prediates thm. prover runtimealls (seonds)oppy 6500 23 5509 98iotl 1250 5 500 13openlos 544 5 132 6srdriver 350 30 3034 93log 236 6 98 5Table 1: The devie drivers run through C2bp.�xpoint. V 0 � V is the set of boolean variables suh thatE(V 0) = E0.Fourth, we try several syntati heuristis to onstrutFV (') diretly from '. As a simple example, if there existsa boolean variable b suh that E(b) = ', then we return b,without requiring any alls to the theorem prover. Fifth, weahe all omputations by the theorem prover and the aliasanalysis, so that work is not repeated.While the worst-ase omplexity of omputing the ab-stration is exponential in the number of prediates, theabove optimizations dramatially redue the number of allsmade to the theorem prover in most examples. More-over, the above optimizations all have the property thatthey leave the resulting BP(P; E) semantially equivalent tothe boolean program produed without these optimizations.Some of the optimizations desribed rely on the existene ofthe enfore data invariant for soundness.If we are willing to sari�e some preision, there areother optimization opportunities. For example, we an limitthe length of ubes onsidered in the F omputation to someonstant k, lowering the F funtion's omplexity from expo-nential to O(nk). In pratie, we have found that setting kto 3 provides the needed preision in most ases. As anotheroptimization, we an ompute the F funtion only on atomiprediates. That is, we reursively onvert F('1 ^ '2) toF('1) ^ F('2) and F('1 _ '2) to F('1) _ F('2). Thisallows us to make use of all of the existing optimizationsof the F funtion desribed above in a �ner-grained man-ner. Distribution of F through ^ loses no preision, whiledistribution of F through _ an lose preision.6 ExperieneWe have implemented C2bp in OCaml, on top of the ASTtoolkit (a modi�ed version of Mirosoft's C/C++ ompilerthat exports an abstrat syntax tree interfae to lients),the Simplify [15, 27℄ and Vampyre [7℄ theorem provers, andDas's points-to analysis [12℄.We have applied C2bp to two problem areas: (1) hek-ing safety properties of Windows NT devie drivers, in theontext of the SLAM projet and the SLAM toolkit; (2)disovering invariants regarding array bounds heking andlist-manipulating ode.6.1 The SLAM Toolkit and its Appliation to NTDevie DriversThe goal of the SLAM projet is to automatially hekthat a program respets a set of temporal safety propertiesof the interfaes it uses. Safety properties are the lass ofproperties that state that \something bad does not happen".An example is requiring that a lok is never released without

www.manaraa.com

�rst being aquired (see [23℄ for a formal de�nition). Givena program and a safety property, we wish to either validatethat the ode respets the property, or �nd an exeutionpath that shows how the ode violates the property.Given a safety property to hek on a C program, theSLAM proess has the following phases: (1) abstration,(2) model heking, and (3) prediate disovery. We havedeveloped the SLAM toolkit to support eah of these phases:� C2bp, whih is the topi of this paper;� Bebop, a tool for model heking boolean programs [5℄;� Newton, a tool that disovers additional prediates tore�ne the boolean program, by analyzing the feasibil-ity of paths in the C program (the subjet of a futurepaper).The SLAM toolkit provides a fully automati way of hek-ing temporal safety properties of system software. Viola-tions are reported by the SLAM toolkit as paths over theprogram P . The toolkit never reports spurious error paths.Instead, it detets suh paths and uses them to automati-ally re�ne the boolean program abstration (to eliminatethese paths from onsideration). Sine property heking isundeidable, the SLAM re�nement algorithm may not on-verge. In addition, it may terminate with a \don't know"answer due to the inompleteness of the underlying theoremprovers. However, in our experiene, it usually onverges ina few iterations with a de�nite answer. One reason for thisis that the properties we heked are very ontrol-intensive,and have relatively simple dependenies on data.We ran the SLAM toolkit on four drivers from the Win-dows 2000 Driver Development Kit 5, as well as an internallydeveloped oppy devie driver, to hek for proper usageof loks and proper handling of interrupt request pakets(see [6℄ for the details of the properties heked). The de-vie drivers in the DDK are supposed to be exemplars forothers to base their devie drivers on. For the two propertieswe heked, the SLAM toolkit validated these drivers (i.e.,found no errors). For the oppy driver under development,the SLAM toolkit found an error in how interrupt requestpakets are handled.Table 1 shows the sizes of these drivers, the number ofprediates in the prediate input �le, the number of theoremprover queries that C2bp made, and the run time for C2bp.For all these examples (and those of the next setion), Be-bop ran in under 10 seonds on the boolean program outputby C2bp.6.2 Array Bounds Cheking and Heap InvariantsTable 2 shows the results of running C2bp on a set of toyillustrative examples. The program kmp is a Knuth-Morris-Pratt string mather and qsort is an array implementationof quiksort, both examples used by Neula [26℄. The pro-gram partition is the list partition example from Figure 1,listfind is a list searh example, and reverse is an exam-ple that reverses a list twie. In most ases, the one-of-inuene heuristis in C2bp were able to redue the numberof theorem prover alls to a manageable number. In thease of the reverse example, every pair of pointers ouldpotentially alias, and the one-of-inuene heuristis ouldnot avoid the exponential number of alls to the theoremprover.5freely available from http://www.mirosoft.om/ddk/

program lines prediates thm. prover runtimealls (seonds)kmp 75 4 286 7qsort 45 2 199 5partition 55 4 263 9list�nd 37 6 4412 172reverse 73 7 26769 747Table 2: The array and heap intensive programs analyzedwith C2bp.strut node {int mark;strut node *next;};void mark(strut node *list) {strut node *this, *tmp, *prev;prev = 0;this = list;/* traverse list and mark, setting bak pointers */while(this != 0) {if(this->mark==1)break;this->mark = 1;tmp = prev;prev = this;this = this->next;prev->next = tmp;}/* traverse bak, resetting the pointers */while(prev!=0){tmp = this;this = prev;prev = prev->next;this->next = tmp;}} Figure 3: List traversal using bak pointersIn our experiments, we were able to onstrut useful in-variants in the ode by modeling only a few prediates thatourred in the program. For example, in the array boundsheking examples (kmp and qsort), where an array a wasindexed in a loop by a variable index, we simply had tomodel the bounds index � 0 and index � length(a) in or-der to produe the appropriate loop invariant. We foundthat in most ases, the omponent prediates of the invari-ant were easy to guess by looking at the onditionals in theprograms.The list reversal example reverse is a simpli�ed versionof a mark-and-sweep garbage olletor. We show the pro-gram in Figure 3. In the �rst while loop, the list is traversedin the forward diretion, while maintaining bak pointers tothe previous nodes. In the seond loop, the pointers are re-versed to get the original list. We wish to verify that theproedure mark leaves the shape of the struture unhanged:i.e., for every node h in the list, h! next points to the samenode before and after the proedure mark. To hek this, weintrodued auxiliary variables h and hnext into the C ode.The variable h is hosen non-deterministially to point atany (non-null) element of the list, and hnext is initialized

www.manaraa.com

with h->next. We input the following prediates to C2bp(along with the program of Figure 3):mark {h == 0,prev == h,this == h,this->next == hnext,prev == this,h->next == hnext,hnext->next == h}With this hoie of prediates, C2bp onstruts an abstratprogram whih is analyzed using Bebop. Bebop shows thatat the end of the mark proedure, h! next = hnext holds.7 Related WorkOur work is inspired by the prediate abstration work ofGraf and Saidi [19℄. Prediate abstration has been used inthe veri�ation of ahe oherene protools [13℄. However,these e�orts work at the spei�ation level, on a languagewith guarded ommands. Doing prediate abstration ona general-purpose programming language is the novel as-pet of our work. A method for onstruting abstrat mod-els from Java programs has been developed in the Banderaprojet [17℄. Their tool requires the user to provide �nite-domain abstrations of data types. Prediate abstrationas implemented in C2bp is more general, as it allows the�nite partitioning of a variable's possible values and addi-tionally allows relationships between variables to be de�ned.Another approah is to use riher type systems to model�nite-state abstrations of programs [14℄.Shape analysis [30℄ also uses a form of prediate abstra-tion, where the prediate language is a �rst-order logi aug-mented with transitive losure. In ontrast, our prediatesare quanti�er-free. Shape analysis requires the user to spe-ify how eah statement a�ets eah prediate of interest,whereas the C2bp tool omputes the abstrat transition sys-tem automatially using a theorem prover.Prediate abstration is a general tehnique that an beused to add prediate (read \path") sensitivity to programanalyses. Ammons and Larus use ode dupliation followedby a traditional dataow analysis to ahieve path-sensitiveresults [1℄. Bodik and Anik use symboli bak-substitution(i.e., weakest preonditions) followed by value numbering toimprove the results of a subsequent three-valued dataowanalysis [8℄. The ombination of prediate abstration byC2bp and path-sensitive dataow analyses in Bebop ouldbe used to ahieve similar results.Prior work for generating loop invariants has used sym-boli exeution on the onrete semantis, augmented withwidening heuristis [32, 33℄. The Houdini tool guessesa andidate set of annotations (invariants) and uses theESC/Java heker to refute inonsistent annotations untilonvergene [18℄. In ontrast, the tools C2bp andBebop usea ombination of abstration (from C program to booleanprogram) and iterative analysis of the abstrated C programto �nd loop invariants expressible as boolean funtions overa given set of prediates.8 ConlusionsWe summarize our main ontributions:

� C2bp is the �rst prediate abstration tool that workson a general-purpose programming language.� We have taken e�orts to handle features suh as pro-edures and pointers in a sound and preise way.� We have explored several optimizations to redue thenumber of alls made to the theorem prover by C2bp.� We have demonstrated the use of C2bp on pro-grams from varying domains | devie drivers, array-manipulating programs, and pointer-manipulating pro-grams.Though we fully support pointers in C2bp, our predi-ates are quanti�er-free. Stating ertain properties of un-bounded data strutures may require a more expressivelogi. For this purpose, it would be interesting to enrihthe prediate language with dependent types and reursivetypes. Among other things, the aliasing problem beomesmore ompliated in this setting. For example, if T is a typethat denotes lists of even length, then the prediate (p 2 T)is true if p points to an objet of type T . Consider an as-signment of the form q->next = NULL. To update (p 2 T),we have to onsider the possibility that q an point any-where inside the list pointed to by p.6 One way around thisdiÆulty is to use linear types to enode that there are noexternal pointers to the list other than p. It would also beinteresting to investigate the use of prediates expressible insome reent pointer logis [29, 22℄.We have foused on prediate abstration of single-threaded programs, and it would be interesting to extendC2bp to work for multi-threaded ode. Several issues needto be resolved here. First, one needs to establish an ap-propriate notion of atomiity of exeution. Next, while ab-strating any statement one has to aount for the possibilityof interferene from another thread. Even if suh an abstra-tion were possible, model heking boolean programs witheven two threads is undeidable. One possible solution is tofurther abstrat boolean programs to �nite-state mahines,and then use traditional model heking algorithms to ex-plore interleaving exeutions of the �nite-state mahines. Afurther problem is that in ertain situations, it is not possi-ble to know the number of threads in advane. If we wereto �rst abstrat boolean programs to �nite-state mahines,then it is possible to use parameterized model heking tohandle an arbitrary number of threads [2℄. It is not lear ifthese abstrations an be performed automatially.We have hosen C as our soure language for prediateabstration. However, our fundamental ontribution is a setof tehniques to handle proedure alls and pointers dur-ing prediate abstration. The tehniques in this paper anbe adapted to onstrut prediate abstrations of programswritten in other imperative languages suh as Java.We plan to improve some ineÆienies we have in theimplementation. The theorem prover is urrently startedas a separate proess eah time it is used, whih is veryineÆient. A more fundamental issue is that we urrentlyuse theorem provers as blak boxes. We plan to investigate ifopening up the internals of the theorem prover an improvethe eÆieny of the abstration proess.Generating prediates for a prediate abstration toollike C2bp is another open researh problem. We are ur-rently building a tool alled Newton in the SLAM toolkit to6We thank Frank Pfenning for this observation.

www.manaraa.com

generate prediates from the model heker's ounterexam-ples, using path simulation. We are also exploring prediategeneration using value ow analysis on the program, withrespet to the properties of interest. Our urrent approahseems to work as long as the properties of interest haverelatively simple dependenies on data. For data-intensiveproperties, prediate generation may have to use wideningheuristis as in [32, 33℄.Aknowledgements. We thank Andreas Podelski for help-ing us desribe the C2bp tool in terms of abstrat interpre-tation. We thank Manuvir Das for providing us his one-level ow analysis tool. We thank the developers of theAST toolkit at Mirosoft Researh, and Manuel F�ahndrihfor providing us his OCaml interfae to the AST toolkit.We thank Craig Chambers for several interesting disus-sions about C2bp. Thanks also to the members of the Soft-ware Produtivity Tools researh group at Mirosoft Re-searh for many enlightening disussions on program anal-ysis, programming languages and devie drivers, as well astheir numerous ontributions to the SLAM toolkit.Referenes[1℄ G. Ammons and J. R. Larus. Improving data-ow analysiswith path pro�les. In PLDI 98: Programming LanguageDesign and Implementation, pages 72{84. ACM, 1998.[2℄ T. Ball, S. Chaki, and S. K. Rajamani. Parameterized ver-i�ation of multithreaded software libraries. In TACAS 01:Tools and Algorithms for Constrution and Analysis of Sys-tems, LNCS 2031. Springer-Verlag, 2001.[3℄ T. Ball, T. Millstein, and S. K. Rajamani. Polymorphi pred-iate abstration. Tehnial Report MSR Tehnial Report2001-10, Mirosoft Researh, 2000.[4℄ T. Ball, A. Podelski, and S. K. Rajamani. Boolean and arte-sian abstrations for model heking C programs. In TACAS01: Tools and Algorithms for Constrution and Analysis ofSystems, LNCS 2031. Springer-Verlag, 2001.[5℄ T. Ball and S. K. Rajamani. Bebop: A symboli modelheker for Boolean programs. In SPIN 00: SPIN Workshop,LNCS 1885, pages 113{130. Springer-Verlag, 2000.[6℄ T. Ball and S. K. Rajamani. Automatially validating tem-poral safety properties of interfaes. In SPIN 2001: SPINWorkshop, LNCS 2057, May 2001.[7℄ D. Blei and et al. Vampyre: A proof generating theoremprover | http://www.ees.berkeley.edu/~ rupak/vampyre.[8℄ R. Bodik and S. Anik. Path-sensitive value-ow analysis.In POPL 98: Priniples of Programming Languages, pages237{251. ACM, 1998.[9℄ R. Bryant. Graph-based algorithms for boolean funtion ma-nipulation. IEEE Transations on Computers, C-35(8):677{691, 1986.[10℄ J. Corbett, M. Dwyer, J. Hatli�, C. Pasareanu, Robby,S. Laubah, and H. Zheng. Bandera : Extrating �nite-state models from Java soure ode. In ICSE 00: SoftwareEngineering, 2000.[11℄ P. Cousot and R. Cousot. Abstrat interpretation: a uni�edlattie model for the stati analysis of programs by onstru-tion or approximation of �xpoints. In POPL 77: Priniplesof Programming Languages, pages 238{252. ACM, 1977.[12℄ M. Das. Uni�ation-based pointer analysis with diretionalassignments. In PLDI 00: Programming Language Designand Implementation, pages 35{46. ACM, 2000.[13℄ S. Das, D. L. Dill, and S. Park. Experiene with prediate ab-stration. In CAV 00: Computer-Aided Veri�ation, LNCS1633, pages 160{171. Springer-Verlag, 1999.

[14℄ R. DeLine and M. F�ahndrih. Enforing high-level protoolsin low-level software. In PLDI 01: Programming LanguageDesign and Implementation. ACM, 2001.[15℄ D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover{ http://researh.ompaq.om/sr/es/simplify.html.[16℄ E. Dijkstra. A Disipline of Programming. Prentie-Hall,1976.[17℄ M. Dwyer, J. Hatli�, R. Joehanes, S. Laubah, C. Pasare-anu, Robby, W. Visser, and H. Zheng. Tool-supported pro-gram abstration for �nite-state veri�ation. In ICSE 01:Software Engineering (to appear), 2001.[18℄ C. Flanagan, R. Joshi, and K. R. M. Leino. Annotation in-ferene for modular hekers. Information Proessing Letters(to appear), 2001.[19℄ S. Graf and H. Sa��di. Constrution of abstrat state graphswith PVS. In CAV 97: Computer-aided Veri�ation, LNCS1254, pages 72{83. Springer-Verlag, 1997.[20℄ D. Gries. The Siene of Programming. Springer-Verlag,1981.[21℄ N. Heintze. Set-based analysis of ML programs. In LFP 94:LISP and Funtional Programming, pages 306{317. ACM,1994.[22℄ S. Ishtiaq and P. O'Hearn. BI as an assertion language formutable data strutures. In POPL 01: Priniples of Pro-gramming Languages, pages 14{26. ACM, 2001.[23℄ L. Lamport. Proving the orretness of multiproess pro-grams. IEEE Transations on Software Engineering, SE-3(2):125{143, 1977.[24℄ W. Landi, B. G. Ryder, and S. Zhang. Interproedural sidee�et analysis with pointer aliasing. In PLDI 93: Program-ming Language Design and Implementation, pages 56{67.ACM, 1993.[25℄ J. M. Morris. A general axiom of assignment. In TheoretialFoundations of Programming Methodology, Leture Notesof an International Summer Shool, pages 25{34. D. ReidelPublishing Company, 1982.[26℄ G. Neula. Proof arrying ode. In POPL 97: Priniples ofProgramming Languages, pages 106{119. ACM, 1997.[27℄ G. Nelson. Tehniques for program veri�ation. TehnialReport CSL81-10, Xerox Palo Alto Researh Center, 1981.[28℄ T. Reps, S. Horwitz, and M. Sagiv. Preise interproedu-ral dataow analysis via graph reahability. In POPL 95:Priniples of Programming Languages, pages 49{61. ACM,1995.[29℄ J. C. Reynolds. Intuitionisti reasoning about shared muta-ble data struture. In Millenial Perspetives in ComputerSiene, pages 303{321. Palgrave, 2001.[30℄ M. Sagiv, T. Reps, and R. Wilhelm. Parametri shape anal-ysis via 3-valued logi. In POPL 99: Priniples of Program-ming Languages, pages 105{118. ACM, 1999.[31℄ M. Sharir and A. Pnueli. Two approahes to interproeduraldata dalow analysis. In Program Flow Analysis: Theory andAppliations, pages 189{233. Prentie-Hall, 1981.[32℄ N. Suzuki and K. Ishihata. Implementation of an arraybound heker. In POPL 77: Priniples of ProgrammingLanguages, pages 132{143. ACM, 1977.[33℄ Z. Xu, B. P. Miller, and T. Reps. Safety heking of ma-hine ode. In PLDI 00: Programming Language Designand Implementation, pages 70{82. ACM, 2000.

