
www.manaraa.com

Automati
 Predi
ate Abstra
tion of C ProgramsThomas Ball Rupak Majumdartball�mi
rosoft.
om rupak�
s.berkeley.eduMi
rosoft Resear
h U.C. BerkeleyTodd Millstein Sriram K. Rajamanitodd�
s.washington.edu sriram�mi
rosoft.
omUniv. of Washington Mi
rosoft Resear
hhttp://resear
h.mi
rosoft.
om/slam/Abstra
tModel 
he
king has been widely su

essful in validating anddebugging designs in the hardware and proto
ol domains.However, state-spa
e explosion limits the appli
ability ofmodel 
he
king tools, so model 
he
kers typi
ally operateon abstra
tions of systems.Re
ently, there has been signi�
ant interest in applyingmodel 
he
king to software. For in�nite-state systems likesoftware, abstra
tion is even more 
riti
al. Te
hniques forabstra
ting software are a prerequisite to making softwaremodel 
he
king a reality.We present the �rst algorithm to automati
ally 
onstru
ta predi
ate abstra
tion of programs written in an industrialprogramming language su
h as C, and its implementation ina tool | C2bp. The C2bp tool is part of the SLAM toolkit,whi
h uses a 
ombination of predi
ate abstra
tion, model
he
king, symboli
 reasoning, and iterative re�nement tostati
ally 
he
k temporal safety properties of programs.Predi
ate abstra
tion of software has many appli
ations,in
luding dete
ting program errors, synthesizing programinvariants, and improving the pre
ision of program analy-ses through predi
ate sensitivity. We dis
uss our experien
eapplying the C2bp predi
ate abstra
tion tool to a varietyof problems, ranging from 
he
king that list-manipulating
ode preserves heap invariants to �nding errors in WindowsNT devi
e drivers.1 Introdu
tionIn the hardware and proto
ol domains, model 
he
king hasbeen used to validate and debug systems by algorithmi
 ex-ploration of their state spa
es. State-spa
e explosion is amajor limitation, and typi
ally model 
he
kers explore thestate spa
e of an abstra
ted system. For software, whi
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is typi
ally in�nite-state, abstra
tion is even more 
riti
al.Any e�ort to model 
he
k software must �rst 
onstru
t anabstra
t model of the software.A promising approa
h to 
onstru
t abstra
tions auto-mati
ally, 
alled predi
ate abstra
tion, was �rst proposed byGraf and Sa��di [19℄. With predi
ate abstra
tion, the 
on-
rete states of a system are mapped to abstra
t states a
-
ording to their evaluation under a �nite set of predi
ates.Automati
 predi
ate abstra
tion algorithms have been de-signed and implemented before for �nite-state systems andfor in�nite-state systems spe
i�ed as guarded 
ommands.However, no one has demonstrated automati
 predi
ate ab-stra
tion on a programming language su
h as C.We present a tool 
alled C2bp that performs automati
predi
ate abstra
tion of C programs. Given a C programP and a set E of predi
ates (pure C boolean expressions
ontaining no fun
tion 
alls), C2bp automati
ally 
reates aboolean program BP(P;E), whi
h is an abstra
tion of P . Aboolean program is essentially a C program in whi
h the onlytype available is boolean (the boolean program language hassome additional 
onstru
ts that will be presented later). Theboolean program has the same 
ontrol-
ow stru
ture as Pbut 
ontains only jEj boolean variables, ea
h representing apredi
ate in E. For example, if the predi
ate (x < y) is inE, where x and y are integer variables in P , then there isa boolean variable in BP(P;E) whose truth at a programpoint p implies that (x < y) is true at p in P . For ea
hstatement s of P , C2bp automati
ally 
onstru
ts the 
or-responding boolean transfer fun
tions that 
onservativelyrepresent the e�e
t of s on the predi
ates in E. The re-sulting boolean program 
an be analyzed pre
isely using atool 
alled Bebop [5℄ that performs interpro
edural data
owanalysis [31, 28℄ using binary de
ision diagrams.We present the details of the C2bp algorithm, as wellas results from applying C2bp to a variety of problems andprograms:� We have applied C2bp and Bebop to pointer-manipulating programs to identify invariants involvingpointers. In one example, these invariants lead to morepre
ise aliasing information than is possible with a 
ow-sensitive alias analysis. In another example, we showthat list-manipulating 
ode preserves various stru
turalproperties of the heap, as has been done with shapeanalysis [30℄. This is noteworthy be
ause our predi
ate
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language is a quanti�er-free logi
, rather than the morepowerful logi
 of [30℄.� We have applied C2bp and Bebop to examples fromNe
ula's work on proof-
arrying 
ode [26℄ to automati-
ally identify loop invariants in these examples that thePCC 
ompiler was required to generate.� We have used C2bp in the SLAM toolkit to 
he
k tem-poral safety properties of Windows NT devi
e drivers.The SLAM toolkit uses C2bp and Bebop to stati
allydetermine whether or not an assertion violation 
antake pla
e in C 
ode. A unique part of the toolkit is itsuse of a demand-driven iterative pro
ess to automati-
ally �nd predi
ates that are relevant to the parti
ularassertion under examination. When the 
urrent set ofpredi
ates and the boolean program abstra
tion thatit indu
es are insuÆ
ient to show that an assertiondoes/doesn't fail, new predi
ates are found to re�nethe abstra
tion. Although the SLAM pro
ess may not
onverge in theory, due to the unde
idability of the as-sertion violation problem, it has 
onverged on all NTdevi
e drivers we have analyzed (even though they 
on-tain loops).For a detailed proof of soundness of the abstra
tion al-gorithm presented in this paper, the interested reader is re-ferred to our te
hni
al report [3℄. In work with AndreasPodelski [4℄ we have used the framework of abstra
tion in-terpretation to formalize the pre
ision of the C2bp algo-rithm for single pro
edure programs with no pointers. Se
-tion 4.6 reviews the soundness theorem for C2bp that wehave proved and des
ribes our pre
ision results.The rest of this paper is organized as follows. Se
-tion 2 gives an example of applying C2bp to a pointer-manipulating C pro
edure. Se
tion 3 lists the 
hallenges inperforming predi
ate abstra
tion on C programs. Se
tion 4des
ribes our predi
ate abstra
tion algorithm in detail. Se
-tion 5 des
ribes extensions and optimizations to the C2bptool. Se
tion 6 presents results on applying the C2bp toolto a variety of C programs. Se
tion 7 reviews related workand Se
tion 8 
on
ludes the paper.2 Example: Invariant Dete
tion in Pointer-manipulating ProgramsThis se
tion presents the appli
ation of C2bp and the Be-bop model 
he
ker to a pointer-manipulating pro
edure.The 
ombination of the two tools determines program-point-spe
i�
 invariants about the pro
edure, whi
h 
an be usedto re�ne pointer aliasing information.2.1 C2bpConsider the partition fun
tion of Figure 1(a). This pro-
edure takes a pointer to a list of integers l and an integerv and partitions the list into two lists: one 
ontaining the
ells with value greater than v (returned by the fun
tion)and the other 
ontaining the 
ells with value less than orequal to v (the original list, destru
tively updated).We input the program in Figure 1(a) along with the fol-lowing predi
ate input �le to C2bp:partition {
urr == NULL,prev == NULL,


urr->val > v,prev->val > v}The predi
ate input �le spe
i�es a set of four predi
ates,lo
al to the pro
edure partition. Figure 1(b) shows theboolean program resulting from the abstra
tion of the pro-
edure partition with respe
t to these predi
ates.1 Theboolean program de
lares four variables of type bool in pro-
edure partition, ea
h 
orresponding to one of the fourpredi
ates from the predi
ate input �le.2 The variables' ini-tial values are un
onstrained.The boolean program is guaranteed to be an abstra
tionof the C program in the following sense: any feasible exe-
ution path of the C program is a feasible exe
ution pathof the boolean program. Of 
ourse, there may be feasibleexe
ution paths of the boolean program that are infeasiblein the C program. Su
h paths 
an lead to impre
ision insubsequent model 
he
king.We now informally des
ribe how the C2bp tool translatesea
h statement of the C program into a 
orresponding set ofstatements in the boolean program. An assignment state-ment in the C program is translated to a set of assignmentsthat 
apture the e�e
t of the original assignment statementon the input predi
ates. For example, the assignment state-ment \prev=NULL;" in the C program is translated to twoassignment statements in the boolean program. The �rst,\fprev==NULLg=true;", re
e
ts the truth of the predi
ate(prev = NULL) after the assignment. The value of thepredi
ate (prev ! val > v) is unde�ned after this assign-ment and is thus invalidated by the assignment statement\fprev->val>vg = unknown();". The unknown fun
tion isde�ned as:bool unknown() {if (*) { return true; }else { return false; }}The unknown fun
tion uses the 
ontrol expression \*", whi
hnon-deterministi
ally 
hooses the then or the else bran
h,to return either true or false.The C2bp tool determines that the other two predi-
ates are una�e
ted by the assignment \prev=NULL;", sothey need not be updated. The C2bp tool uses a 
ow-insensitive points-to analysis [12℄ to resolve aliases betweenpointers. In this program, sin
e none of the pointer variablesin the set f 
urr, prev, next, newl g has its address taken,none of these variables 
an be aliased by any other expres-sion in the pro
edure. As a result, C2bp resolves that theonly predi
ates that the assignment \prev=NULL;" a�e
tsare (prev = NULL) and (prev ! val > v).As another example, the assignment \prev=
urr;" isalso abstra
ted to assignments to the two predi
ates in-volving prev. These predi
ates are assigned the values ofthe 
orresponding predi
ates on 
urr, as expe
ted. Finally,C2bp determines that the assignment \newl=NULL;" 
annota�e
t any of the four input predi
ates, so the assignmentis translated to the skip statement, the boolean program's\no-op".In the above examples, most of the input predi
atesare updated a

urately. For example, the assignment1The boolean program shown is not the exa
t output of C2bp| ithas been simpli�ed to aid readability.2In boolean programs, variable identi�ers 
an be regular C identi-�ers or an arbitrary string en
losed between \f" and \g".
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typedef stru
t 
ell {int val;stru
t 
ell* next;} *list;list partition(list *l, int v) {list 
urr, prev, newl, nextCurr;
urr = *l;prev = NULL;newl = NULL;while (
urr != NULL) {nextCurr = 
urr->next;if (
urr->val > v) {if (prev != NULL) {prev->next = nextCurr;}if (
urr == *l) {*l = nextCurr;}
urr->next = newl;L: newl = 
urr;} else {prev = 
urr;}
urr = nextCurr;}return newl;}

void partition() {bool {
urr==NULL}, {prev==NULL};bool {
urr->val>v}, {prev->val>v};{
urr==NULL} = unknown(); // 
urr = *l;{
urr->val>v} = unknown();{prev==NULL} = true; // prev = NULL;{prev->val>v} = unknown();skip; // newl = NULL;while(*) { // while(
urr!=NULL)assume(!{
urr==NULL}); //skip; // nextCurr = 
urr->nextif (*) { // if (
urr->val > v) {assume({
urr->val>v}); //if (*) { // if (prev != NULL) {assume(!{prev==NULL}); //skip; // prev->next = nextCurr;} // }if (*) { // if (
urr == *l) {skip; // *l = nextCurr;} // }skip; // 
urr->next = newl;L: skip; // newl = 
urr} else { // } else {assume(!{
urr->val>v}); //{prev==NULL} = {
urr==NULL}; // prev = 
urr;{prev->val>v} = {
urr->val>v}; //} // }{
urr==NULL} = unknown(); // 
urr = nextCurr;{
urr->val>v} = unknown();}assume({
urr==NULL});}(a) (b)Figure 1: (a) List partition example; (b) The boolean program of the list partition example, abstra
ted with respe
t to theset of input predi
ates f 
urr==NULL, prev==NULL, 
urr->val > v, prev->val > v g. The unknown fun
tion is used togenerate the value true or false non-deterministi
ally (see body text for an explanation).\fprev==NULLg=f
urr==NULLg;" in the boolean programexa
tly represents the e�e
t of the assignment \prev=
urr"on the predi
ate (prev = NULL). However, it is possi-ble for su
h exa
t information to be unavailable, be
ausesome of the ne
essary predi
ates have not been input toC2bp. In that 
ase, we must repla
e exa
t informationwith a 
onservative approximation. For example, the as-signment \
urr=nextCurr;" 
an a�e
t the two predi
atesinvolving 
urr. However, be
ause there are no predi
atesabout nextCurr in the predi
ate input �le, there is no wayto dedu
e the 
orre
t truth value of these predi
ates. Thisrepresents a worst 
ase of sorts, as the input predi
ates pro-vide absolutely no information about the appropriate truthvalues for the two predi
ates to be updated. As a result, thetwo predi
ates are \invalidated" using the unknown fun
tion,as de�ned above.The C2bp tool translates 
onditional statements in theC program into non-deterministi
 
onditional statementsin the boolean program, using the 
ontrol expression \*".However, it also inserts \assume" statements to 
apture thesemanti
s of 
onditionals with respe
t to the input pred-i
ates. For example, the �rst statement inside the whileloop is \assume(!f
urr==NULLg);". The assume a
ts as a�lter on the state spa
e of the boolean program: in this
ase, it is impossible to rea
h the program point after theassume if the variable f
urr==NULLg is true. In this way, wefaithfully model the guard of the original while loop.

2.2 BebopThe boolean program output by C2bp is input to the Be-bop model 
he
ker [5℄, whi
h 
omputes the set of rea
hablestates for ea
h statement of a boolean program using aninterpro
edural data
ow analysis algorithm in the spirit ofSharir-Pnueli and Reps-Horwitz-Sagiv [31, 28℄. A state ofa boolean program at a statement s is simply a valuationto the boolean variables that are in s
ope at statement s(in other words, a bit ve
tor, with one bit for ea
h variablein s
ope). The set of rea
hable states (or invariant) of aboolean program at s is thus a set of bit ve
tors (equiva-lently, a boolean fun
tion over the set of variables in s
opeat s).Bebop di�ers from typi
al implementations of data
owalgorithms in two 
ru
ial ways. First, it 
omputes over setsof bit ve
tors at ea
h statement rather than single bit ve
-tors. This is ne
essary to 
apture 
orrelations between vari-ables. Se
ond, it uses binary de
ision diagrams [9℄ (BDDs)to impli
itly represent the set of rea
hable states of a pro-gram, as well as the transfer fun
tions for ea
h statementin a boolean program. However, Bebop uses an expli
it
ontrol-
ow graph representation, as in a 
ompiler, ratherthan en
oding the 
ontrol-
ow with BDDs, as done in mostsymboli
 model 
he
kers.For our example, Bebop outputs the following invariantrepresenting the rea
hable states at label L of the boolean
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program: (
urr 6= NULL) ^ (
urr ! val > v) ^((prev ! val � v) _ (prev = NULL))Be
ause C2bp is sound, this boolean fun
tion is also aninvariant over the state of the C program at label L.Su
h invariants 
an be used for many di�erent purposes;we give several examples in Se
tion 6. One interesting us-age of the above invariant is to re�ne alias information. Inparti
ular, the invariant implies that *prev and *
urr arenever aliases at label L in the pro
edure partition. In otherwords, variables prev and 
urr never point to the samememory lo
ation at label L. This 
an be seen as follows:� If (prev = NULL), then (prev 6= 
urr) be
ause(
urr 6= NULL).� If (prev 6= NULL), then sin
e (
urr ! val > v) and(prev ! val � v), it follows that (prev ! val 6=
urr ! val), whi
h implies (prev 6= 
urr).3This fa
t 
an be dedu
ed automati
ally from the given in-variant. In parti
ular, a de
ision pro
edure 
an determinethat the invariant implies (prev 6= 
urr). In this way, we 
anautomati
ally re�ne an existing alias analysis. Traditional
ow-sensitive alias analyses would not dis
over that *prevand *
urr are not aliases at label L, sin
e su
h analyses donot use the values of �elds (su
h as prev->val) to eliminatepossible aliasing relationships.2.3 SummaryWe have shown how C2bp is used to 
ompute a booleanprogram that is a sound abstra
tion of a C program withrespe
t to a set of predi
ates E. Subsequent model 
he
kingof the boolean program 
an dis
over strong invariants thatare expressed as boolean fun
tions over the predi
ates in E.3 The Challenges of Predi
ate Abstra
tion for CThe 
omplexities of a programming language like C givesrise to several te
hni
al 
hallenges in performing predi
ateabstra
tion:� Pointers. There are two 
losely related subprob-lems in dealing with pointers: (1) assignments throughdereferen
ed pointers in the original C program, and(2) pointers and pointer dereferen
es in the predi
atesover whi
h the abstra
tion is 
omputed. We handle thetwo 
ases in a uniform manner and des
ribe how to usepoints-to analysis [12℄ to improve the pre
ision of ourabstra
tion.� Pro
edures. Programs with pro
edures are handledby allowing pro
edural abstra
tion in the target lan-guage [5℄. In parti
ular, boolean programs have globalvariables, pro
edures with lo
al variables, and 
all-by-value parameter passing. Having expli
it pro
eduresallows us to make both abstra
tion and analysis moreeÆ
ient by exploiting pro
edural abstra
tion present inthe C program. It also allows us to handle re
ursive and3Here we use the 
ontrapositive of the rule usually applied inuni�
ation-based alias analysis: (p = q) ) (�p = �q). That is,(�p 6= �q) ) (p 6= q).

mutually re
ursive pro
edures with no additional me
h-anism. This di�ers from most other approa
hes to soft-ware model 
he
king, whi
h inline pro
edure 
alls [10℄.In the following se
tion, we des
ribe a modular abstra
-tion pro
ess for pro
edures: ea
h pro
edure 
an be ab-stra
ted given only the signatures of the abstra
tionsof its 
allees, and su
h signatures 
an be 
onstru
tedfor ea
h pro
edure in isolation.� Pro
edure 
alls. The abstra
tion pro
ess for pro
e-dure 
alls is 
hallenging, parti
ularly in the presen
e ofpointers. After a 
all, the 
aller must 
onservativelyupdate lo
al state that may have been modi�ed by the
allee. We provide a sound and pre
ise approa
h toabstra
ting pro
edure 
alls that takes su
h side-e�e
tsinto a

ount.� Unknown values. It is not always possible to deter-mine the e�e
t of a statement in the C program on apredi
ate, in terms of the input predi
ate set E. Wedeal with su
h non-determinism dire
tly in the booleanprogram via the non-deterministi
 
ontrol expression\*", whi
h allows us to impli
itly express a three-valueddomain for boolean variables.� Pre
ision-eÆ
ien
y tradeo�. Computing the ab-stra
t transfer fun
tion for ea
h statement in the Cprogram with respe
t to the set E of predi
ates mayrequire the use of a theorem prover. Obtaining a pre-
ise abstra
t transfer fun
tion requires O(2jEj) 
alls tothe theorem prover, in the worst 
ase. We have ex-plored several optimization te
hniques to redu
e thenumber of 
alls made to the theorem prover. Some ofthese te
hniques result in an equivalent boolean pro-gram, while others trade o� pre
ision for 
omputationspeed.4 Predi
ate Abstra
tionThis se
tion des
ribes the design and implementation ofC2bp in detail. Given a C program P and a set E =f'1; '2; : : : ; 'ng of pure boolean C expressions over thevariables of P and 
onstants of the C language, C2bp au-tomati
ally 
onstru
ts an abstra
tion of P with respe
tto E [19℄. This abstra
tion is represented as a booleanprogram BP(P;E), whi
h is a program that has identi-
al 
ontrol stru
ture to P but 
ontains only boolean vari-ables. In parti
ular, BP(P;E) 
ontains n boolean variablesV = fb1; b2; : : : ; bng, where ea
h boolean variable bi repre-sents the predi
ate 'i (1 � i � n). As des
ribed in Se
-tion 4.6, BP(P;E) is guaranteed to be an abstra
tion of Pin that the set of exe
ution tra
es of BP(P;E) is a supersetof the set of exe
ution tra
es of P .Our tool handles all synta
ti
 
onstru
ts of the C lan-guage, in
luding pointers, stru
tures, and pro
edures. Itsmain limitation is that it uses a logi
al model of memorywhen analyzing C programs. That is, it models the expres-sion p+i, where p is a pointer and i is an integer, as yieldinga pointer value that points to the obje
t pointed to by p.In the sequel, we assume that the C program has been
onverted into a simple intermediate form in whi
h: (1) allintrapro
edural 
ontrol-
ow is a

omplished with if-then-else statements and gotos; (2) all expressions are free ofside-e�e
ts and short-
ir
uit evaluation and do not 
ontainmultiple dereferen
es of a pointer (e.g., **p); (3) a fun
tion
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all only o

urs at the top-most level of an expression (forexample, \z=x+f(y);" is repla
ed by \t=f(y); z=x+t;").4.1 Weakest Pre
onditions and CubesFor a statement s and a predi
ate ', let WP (s; ') denotethe weakest liberal pre
ondition [16, 20℄ of ' with respe
t tostatement s. WP (s;') is de�ned as the weakest predi
atewhose truth before s entails the truth of ' after s terminates(if it terminates). Let \x = e" be an assignment, where xis a s
alar variable and e is an expression of the appropriatetype. Let ' be a predi
ate. By de�nition WP (x = e; ') is' with all o

urren
es of x repla
ed with e, denoted '[e=x℄.For example:WP (x=x+1; x < 5) = (x+ 1) < 5 = (x < 4)The weakest pre
ondition 
omputation is 
entral to thepredi
ate abstra
tion pro
ess. Suppose statement s o

ursbetween program points p and p0. If ' is a predi
ate inE with 
orresponding boolean variable b then it is safe toassign b the value true in BP(P;E) between program pointsp and p0 if the boolean variable b0 
orresponding toWP (s; ')is true at program point p. However, no su
h variable b0may exist if WP (s; ') is not in E. For example, supposeE = f(x < 5); (x = 2)g. We have seen that WP (x=x+1; x <5) = (x < 4), but the predi
ate (x < 4) is not in E. In this
ase, C2bp uses de
ision pro
edures (i.e., a theorem prover)to strengthen the weakest pre
ondition to an expression overthe predi
ates in E. In our example, we 
an show that(x = 2) ) (x < 4). Therefore if (x = 2) is true before\x=x+1;", then (x < 5) is true afterwards.We formalize this strengthening of a predi
ate as follows.A 
ube over V is a 
onjun
tion 
i1 ^ : : : ^ 
ik , where ea
h
ij 2 fbij ;:bij g for some bij 2 V . For a variable bi 2V , let E(bi) denote the 
orresponding predi
ate 'i, and letE(:bi) denote the predi
ate :'i. Extend E to 
ubes anddisjun
tions of 
ubes in the natural way. For any predi
ate 'and set of boolean variables V , let FV (') denote the largestdisjun
tion of 
ubes 
 over V su
h that E(
) implies '. Thepredi
ate E(FV (')) represents the weakest predi
ate overE(V ) that implies '. In our example, E(FV (x < 4)) = (x =2). It will also be useful to de�ne a 
orresponding weakeningof a predi
ate. De�ne GV (') as :FV (:'). The predi
ateE(GV (')) represents the strongest predi
ate over E(V ) thatis implied by '.For ea
h 
ube, the impli
ation 
he
k involves a 
all toa theorem prover implementing the required de
ision pro-
edures. Our implementation of C2bp uses two theoremprovers: Simplify [15℄ and Vampyre [7℄, both Nelson-Oppenstyle provers [27℄. A naive 
omputation of FV (�) and GV (�)requires exponentially many 
alls to the theorem prover inthe worst 
ase. Se
tion 5 des
ribes several optimizationsthat make the FV and GV 
omputations pra
ti
al.4.2 Pointers and aliasingIn the presen
e of pointers, WP (x=e; ') is not ne
essarily'[e=x℄. As an example, WP (x = 3; �p > 5) is not (�p > 5)be
ause if x and �p are aliases, then (�p > 5) 
annot betrue after the assignment to x. A similar problem o

urswhen a pointer dereferen
e is on the left-hand side of theassignment.To handle these problems, we adapt Morris' general ax-iom of assignment [25℄. A lo
ation is either a variable, a

int bar(int* q, int y) { bar {int l1, l2; y >= 0,... *q <= y,return l1; y == l1,} y > l2}void foo(int* p, int x) { foo {int r; *p <= 0,if (*p <= x) x == 0,*p = x; r == 0else }*p = *p + x;r = bar(p, x);...}Figure 2: An example input to C2bp. On the left are twosimple C pro
edures (bar is not shown in its entirety). Onthe right is the set of predi
ates to model.stru
ture �eld a

ess from a lo
ation, or a dereferen
e of alo
ation. Consider the 
omputation of WP (x=e; '), wherex is a lo
ation, and let y be a lo
ation mentioned in thepredi
ate '. Then there are two 
ases to 
onsider: either xand y are aliases, and hen
e the assignment of e to x will
ause the value of y to be
ome e; or they are not aliases,and the assignment to x leaves y un
hanged. De�ne'[x; e; y℄ = ( &x = &y ^ '[e=y℄)_( &x 6= &y ^ ')Let y1; y2; : : : ; yn be the lo
ations mentioned in '. ThenWP (x=e; ') is de�ned to be '[x; e; y1℄[x; e; y2℄ : : : [x; e; yn℄.In the example above, we haveWP (x = 3; �p > 5) =( &x = p ^ 3 > 5) _ ( &x 6= p ^ �p > 5)In the absen
e of alias information, if the predi
ate ' has klo
ations o

urring in it, the weakest pre
ondition will have2k synta
ti
 disjun
ts, ea
h disjun
t 
onsidering a possiblealias s
enario of the k lo
ations with x. C2bp uses a pointeranalysis to improve the pre
ision of the weakest pre
ondi-tion 
omputation. If the pointer analysis says that x andy 
annot be aliased at the program point before x=e, thenwe 
an prune the disjun
ts representing a s
enario where xis aliased to y, and we 
an partially evaluate the disjun
tsrepresenting a s
enario where x is not aliased to y. This hasthe e�e
t of improving the pre
ision of the resulting booleanprogram BP(P;E) produ
ed by C2bp. Our implementationuses Das's points-to algorithm [12℄ to obtain 
ow-insensitive,
ontext-insensitive may-alias information.4.3 Predi
ate Abstra
tion of AssignmentsConsider an assignment statement \x = e;" at label ` inP . The boolean program BP(P; E) produ
ed by C2bp will
ontain at label ` a parallel assignment to the boolean vari-ables in s
ope at `. A boolean variable bi in BP(P;E) 
anhave the value true after ` if FV (WP (x = e; 'i)) holdsbefore `. Similarly, bi 
an have the value false after ` ifFV (WP (x = e;:'i)) holds before `. Note that these twopredi
ates 
annot be simultaneously true. Finally, if nei-ther of these predi
ates holds before `, then bi should be set
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non-deterministi
ally. This 
an happen be
ause the predi-
ates in E are not strong enough to provide the appropriateinformation, or be
ause the theorem prover is in
omplete.Therefore, BP(P;E) 
ontains the following parallel assign-ment at label `:b1; : : : ; bn =
hoose(FV (WP (x=e; '1));FV (WP (x=e;:'1)));: : : ;
hoose(FV (WP (x=e; 'n));FV (WP (x=e;:'n)))where the 
hoose fun
tion is always part of BP(P;E) andis de�ned as follows:bool 
hoose(bool pos, bool neg) {if (pos) { return true; }if (neg) { return false; }return unknown();}For example, 
onsider abstra
ting the statement \*p=*p+x"in pro
edure foo of Figure 2 with respe
t to the threepredi
ates de
lared to be lo
al to foo. Let us 
all thisstatement s. In this example, a may-alias analysis revealsthat �p 
annot alias x or r. The weakest pre
onditionWP (s; �p � 0) is (�p + x) � 0, sin
e *p 
annot alias x.We have E(FV (�p + x � 0)) = (�p � 0) ^ (x = 0).Similarly, WP (s;:(�p � 0)) is :((�p + x) � 0), andE(FV (:(�p + x � 0))) = :(�p � 0) ^ (x = 0). Theweakest pre
onditions of s with respe
t to the predi
ates(x = 0) and (r = 0) are the respe
tive predi
ates them-selves, sin
e �p 
annot alias x or r. Thus, BP(P;E) will
ontain the following statement in pla
e of the given assign-ment statement, where we use feg to denote the booleanvariable representing predi
ate e:{*p<=0}, {x==0}, {r==0} =
hoose({*p<=0} && {x==0}, !{*p<=0} && {x==0}),
hoose({x==0} , !{x==0}),
hoose({r==0} , !{r==0});Note that the abstra
tion pro
ess for assignment state-ments is based on weakest pre
ondition 
omputations thatare lo
al to ea
h assignment and 
an be 
omputed by apurely synta
ti
 manipulation of predi
ates. C2bp does not
ompute 
ompositions of weakest pre
onditions over pathswith 
omplex 
ontrol 
ow. In parti
ular, C2bp does not re-quire programs to be annotated with fun
tion pre- or post-
onditions, or with loop invariants.4.4 Predi
ate Abstra
tion of Gotos and Condition-alsEvery goto statement in the C program is simply 
opied tothe boolean program.Translating 
onditionals is more involved. Consider some
onditional if (') f...g else f...g in program P . At thebeginning of the then bran
h in P , the predi
ate ' holds.Therefore, at the beginning of the then bran
h in the 
or-responding 
onditional in BP(P;E), the 
ondition GV (') isknown to hold. Similarly, at the beginning of the else bran
hin P , we know that :' holds, so GV (:') is known to hold atthat program point in BP(P;E). Therefore, BP(P;E) will
ontain the following abstra
tion of the above 
onditional:if(�)fassume(GV ('))

: : :gelsefassume(GV (:')): : :gNote that the test in the abstra
ted 
onditional is �, so bothpaths through the 
onditional are possible. Within the thenand else bran
hes, we use the assume statement to retainthe semanti
s of the original 
onditional test. The assumestatement is the dual of assert: assume(') never fails. Exe-
utions on whi
h ' does not hold at the point of the assumeare simply ignored [16℄.As an example, 
onsider the 
onditional in pro
edure fooof Figure 2. The abstra
tion of this 
onditional with respe
tto the three predi
ates lo
al to foo is:if (�) f // if (*p <= x)assume (fx == 0g =) f*p <= 0g);: : :g else fassume (fx == 0g =) !f*p <= 0g);: : :g4.5 Predi
ate Abstra
tion of Pro
edure CallsWe now des
ribe how C2bp handles multi-pro
edure pro-grams.4.5.1 NotationRe
all that the input to C2bp is the program P and a set Eof predi
ates. Let GP be the global variables of the programP . Ea
h predi
ate in E is annotated as being either globalto BP(P;E) or lo
al to a parti
ular pro
edure in BP(P;E)(see Figure 2, in whi
h predi
ates are lo
al to bar or foo{ there are no global predi
ates in this example), therebydetermining the s
ope of the 
orresponding boolean vari-able in BP(P;E). A global predi
ate 
an refer only to vari-ables in GP . Let EG denote the global predi
ates of E andlet VG denote the 
orresponding global boolean variables ofBP(P;E).For a pro
edure R, let ER denote the subset of predi
atesin E that are lo
al to R, and let VR denote the 
orrespondinglo
al boolean variables of R in BP(P;E). In the following,we do not distinguish between a boolean variable b and its
orresponding predi
ate E(b) when unambiguous from the
ontext (that is, in the 
ontext of BP(P;E) we always meanb and in the 
ontext of P we always mean E(b)). Let FRbe the formal parameters of R, and let LR be the lo
alvariables of R. Let r 2 LR [ FR be the return variable of R(we assume, without loss of generality, that there is only onereturn statement in R, and it has the form \return r").Let vars(e) be the set of variables referen
ed in expres-sion e. Let drfs(e) be the set of variables dereferen
ed inexpression e.4.5.2 Determining signaturesA key feature of our approa
h is modularity: ea
h pro
e-dure 
an be abstra
ted by C2bp given only the signaturesof pro
edures that it 
alls. The signature of pro
edure R
an be determined in isolation from the rest of the program,given ER. C2bp operates in two passes. In the �rst passit determines the signature of ea
h pro
edure. It uses these
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signatures to abstra
t pro
edure 
alls (along with all otherstatements) in the se
ond pass.Let R be a pro
edure in P and let R0 be its abstra
tionin BP(P;E). The signature of pro
edure R is a four-tuple(FR; r;Ef ; Er), where:� FR is the set of formal parameters of R,� r is the return variable of R,� Ef is the set of formal parameter predi
ates of R0, de-�ned as fe 2 ER j vars(e) \ LR = ;g, and� Er is the set of return predi
ates of R0, de�ned as:fe 2 ER j (r 2 vars(e) ^ (vars(e) n frg \ LR = ;))_(e 2 Ef^ (vars(e) \GP 6= ;_drfs(e) \ FR 6= ;))g:Ef is the set of formal parameter predi
ates of R0. Thisis the subset of predi
ates in ER that do not refer to any lo-
al variables of R. All predi
ates in ER�Ef will be lo
als ofR0. Er is the set of predi
ates to be returned by R0 (booleanprograms allow pro
edures to have multiple return values).Su
h return predi
ates serve two purposes. One is to pro-vide 
allers with information about r, the return value ofR. The other purpose is to provide 
allers with informationabout any global variables and 
all-by-referen
e parameters,so that lo
al predi
ates of 
allers 
an be updated pre
isely.To handle the �rst 
on
ern, Er 
ontains those predi
ates inER that mention r but do not mention any (other) lo
alsof R in P , as 
allers will not know about these lo
als. Tohandle the se
ond 
on
ern, Er 
ontains those predi
ates inEf that referen
e a global variable or dereferen
e a formalparameter of R.As an example, 
onsider pro
edure bar in Figure 2. Inthe signature of bar, Ef is f�q � y; y � 0g and Er is fy =l1; �q � yg.4.5.3 Handling pro
edure 
allsConsider a 
all v = R(a1; : : : ; aj) to pro
edure R at label` of some pro
edure S in P . The abstra
tion BP(P;E)
ontains a 
all to R0 at label `. Let the signature of R be(FR; r;Ef ; Er). For ea
h formal parameter predi
ate e 2 Ef ,C2bp 
omputes an a
tual value to pass into the 
all. Lete0 = e[a1=f1; a2=f2; : : : ; aj=fj ℄where FR = ff1; f2; : : : ; fjg. The expression e0 representsthe predi
ate e translated to the 
alling 
ontext. The a
tualparameter 
omputed for the formal e is
hoose(FVS[VG(e0);FVS[VG (:e0)).We now explain how C2bp handles the return valuesfrom the 
all to R0. Assume Er = fe1; : : : ; epg. C2bp 
re-ates p fresh lo
al variables T = ft1; : : : ; tpg in pro
edure S0and assigns to them, in parallel, the return values of R0:t1; : : : ; tp = R0(: : : );The �nal step is to update ea
h lo
al predi
ate of S whosevalue may have 
hanged as a result of the 
all. Any predi-
ate in ES that mentions v must be updated. In addition,we must update any predi
ate in ES that mentions a globalvariable, a (possibly transitive) dereferen
e of an a
tual pa-rameter to the 
all, or an alias of either of these kinds of

lo
ations. C2bp uses the pointer alias analysis to determinea 
onservative over-approximation Eu to this set of predi-
ates to update.Let E0 = (ES[EG)�Eu. The predi
ates inE0 along withthe predi
ates in Er are used to update the predi
ates inEu. Let V 0 � VS [VG be the boolean variables in BP(P;E)
orresponding to E0.First C2bp translates the predi
ates in Er to the 
alling
ontext. In parti
ular, for ea
h ei 2 Er, lete0i = ei[v=r; a1=f1; a2=f2; : : : ; aj=fj ℄and let E0r = fe01; : : : ; e0pg.4 De�ne E(ti) = e0i, for ea
hti 2 T . For ea
h e 2 Eu, the 
orresponding boolean variableb 2 VS is assigned the following value:
hoose(FV 0[T (e); FV 0[T (:e)).For example, 
onsider the 
all \bar(p,x)" in Figure 2.Re
all that in the signature of bar, the formal parameterpredi
ates (Ef) are f�q � y; y � 0g and the return predi-
ates (Er) are fy = l1; �q � yg. The abstra
tion of this 
allin the boolean program is as follows:prm1 = 
hoose({*p<=0}&&{x==0}, // for formal {*q<=y}!{*p<=0}&&{x==0});prm2 = 
hoose({x==0}, false); // for formal {y>=0}t1, t2 = bar(prm1, prm2); // t1 for {*q<=y}// t2 for {y==l1}{*p<=0} = 
hoose(t1&&{x==0}, !t1&&{x==0});{r==0} = 
hoose(t2&&{x==0}, !t2&&{x==0};4.6 Formal propertiesWe give two properties that relate P and BP(P; E). The�rst property, soundness, states that B is an abstra
tionof P |every feasible path in P is feasible in B as well.Sin
e a boolean program that allows all paths to be feasibleis sound as well, we also need to state the sense in whi
hB is pre
ise. We do that via the terminology of abstra
tinterpretation [11℄.Soundness. For any path p feasible in P , it is guaranteedthat p is feasible in BP(P;E) as well. Further, if 
 is thestate of the C program P after exe
uting path p, then thereexists an exe
ution of p in the boolean program B ending ina state � su
h that for every 1 � i � n, 'i holds in 
 i� biis true in �. A proof of the soundness of C2bp 
an be foundin [3℄.Pre
ision. The framework of abstra
t interpretation 
anbe used to spe
ify abstra
tions de
laratively. A boolean ab-stra
tion maps 
on
rete states to abstra
t states a

ordingto their evaluation under a �nite set of predi
ates. A 
arte-sian abstra
tion maps a set of boolean ve
tors to a three-valued ve
tor obtained by ignoring dependen
ies betweenthe 
omponents of the ve
tors (see, for example, the workon set-based analysis [21℄). For example, the set of booleanve
tors f(0; 1); (1; 0)g is mapped by the 
artesian abstra
-tion to the three-valued ve
tor (?; ?), where ? represents the\don't know" value. For single pro
edures without pointers,4For simpli
ity, we assume that ea
h formal still refers to the samevalue as its 
orresponding a
tual at the end of the 
all. This 
an be
he
ked using a standard modi�
ation side-e�e
t analysis [24℄. If aformal 
annot be proven to refer to the same value as its 
orrespond-ing a
tual at the end of the 
all, then any predi
ates that mentionthe formal must be removed from Er in the signature of R.
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the abstra
tion 
omputed by C2bp is equivalent to a 
om-position of the boolean and 
artesian abstra
tions [4℄. Weimprove pre
ision by using disjun
tive 
ompletion and fo
usoperations, both of whi
h are implemented in Bebop usingBDDs [4℄.5 ExtensionsThis se
tion des
ribes various te
hniques we have applied toin
rease the pre
ision and eÆ
ien
y of C2bp.5.1 The enfor
e 
onstru
tOften the predi
ates in E are 
orrelated in some way. Forexample, 
onsider the predi
ates (x = 1) and (x = 2). Thesemanti
s asso
iated with these predi
ates forbids the pred-i
ates from being simultaneously true. However, when weuse uninterpreted boolean variables b1 and b2 for the pred-i
ates in BP(P;E), we do not pre
lude an exe
ution of theboolean program in whi
h both variables evaluate true insome state. In order to rule out abstra
t exe
utions 
ontain-ing su
h spurious situations, we add an enfor
e 
onstru
t toboolean programs: the statement enfor
e � in a pro
edurehas the e�e
t of putting assume � between every statementin the pro
edure. This ensures that � is a data invariantmaintained throughout the pro
edure's exe
ution. We 
om-pute � for ea
h pro
edure R simply as FVR[VG(false). Forexample, given only predi
ates (x = 1) and (x = 2), E(�) is:((x = 1) ^ (x = 2)).5.2 OptimizationsThe method des
ribed above for 
onstru
ting abstra
t mod-els of C programs is impra
ti
al without several importantoptimizations. Pro�ling shows that the running time ofC2bp is dominated by the 
ost of theorem proving, as we aremaking an exponential number of 
alls to the prover at ea
hprogram point. Therefore, our optimization e�orts have fo-
used on 
utting down the number of 
alls to the theoremprover.First, when 
omputing FV ('), 
ubes are 
onsidered inin
reasing order by length. If a 
ube 
 is shown to imply ',then we know that any 
ube that 
ontains 
 as a subset willalso imply ', is redundant with 
, and 
an therefore be safelypruned. In this way, the F 
omputation a
tually produ
esa disjun
tion of only the prime impli
ants of FV ('). If a
ube 
 does not imply ' but it implies :', then any 
ubethat 
ontains 
 as a subset also will not imply ', and 
antherefore be safely pruned.Se
ond, for every assignment statement, rather than up-dating the values of every boolean variable in s
ope, we donot update those variables whose truth value will de�nitelynot 
hange as a result of the assignment. The truth valueof a variable b will de�nitely not 
hange as a result of anassignment x=e if WP (x=e; E(b)) = E(b).Third, for ea
h 
omputation FV ('), we perform an anal-ysis to produ
e a set V 0 � V , su
h that E(V 0) 
ontains allpredi
ates from E(V ) that 
an possibly be part of a 
ubethat implies '. Therefore, FV (') 
an safely be repla
ed byFV 0('), redu
ing the number of 
ubes to explore. This setV 0 is determined by a synta
ti
 
one-of-in
uen
e 
omputa-tion. Starting with an empty set E0 we �nd predi
ates inE(V ) that mention a lo
ation or an alias of a lo
ation in ',add these predi
ates to E0, determine the set of lo
ationsmentioned in these predi
ates, and iterate until rea
hing a

program lines predi
ates thm. prover runtime
alls (se
onds)
oppy 6500 23 5509 98io
tl 1250 5 500 13open
los 544 5 132 6srdriver 350 30 3034 93log 236 6 98 5Table 1: The devi
e drivers run through C2bp.�xpoint. V 0 � V is the set of boolean variables su
h thatE(V 0) = E0.Fourth, we try several synta
ti
 heuristi
s to 
onstru
tFV (') dire
tly from '. As a simple example, if there existsa boolean variable b su
h that E(b) = ', then we return b,without requiring any 
alls to the theorem prover. Fifth, we
a
he all 
omputations by the theorem prover and the aliasanalysis, so that work is not repeated.While the worst-
ase 
omplexity of 
omputing the ab-stra
tion is exponential in the number of predi
ates, theabove optimizations dramati
ally redu
e the number of 
allsmade to the theorem prover in most examples. More-over, the above optimizations all have the property thatthey leave the resulting BP(P; E) semanti
ally equivalent tothe boolean program produ
ed without these optimizations.Some of the optimizations des
ribed rely on the existen
e ofthe enfor
e data invariant for soundness.If we are willing to sa
ri�
e some pre
ision, there areother optimization opportunities. For example, we 
an limitthe length of 
ubes 
onsidered in the F 
omputation to some
onstant k, lowering the F fun
tion's 
omplexity from expo-nential to O(nk). In pra
ti
e, we have found that setting kto 3 provides the needed pre
ision in most 
ases. As anotheroptimization, we 
an 
ompute the F fun
tion only on atomi
predi
ates. That is, we re
ursively 
onvert F('1 ^ '2) toF('1) ^ F('2) and F('1 _ '2) to F('1) _ F('2). Thisallows us to make use of all of the existing optimizationsof the F fun
tion des
ribed above in a �ner-grained man-ner. Distribution of F through ^ loses no pre
ision, whiledistribution of F through _ 
an lose pre
ision.6 Experien
eWe have implemented C2bp in OCaml, on top of the ASTtoolkit (a modi�ed version of Mi
rosoft's C/C++ 
ompilerthat exports an abstra
t syntax tree interfa
e to 
lients),the Simplify [15, 27℄ and Vampyre [7℄ theorem provers, andDas's points-to analysis [12℄.We have applied C2bp to two problem areas: (1) 
he
k-ing safety properties of Windows NT devi
e drivers, in the
ontext of the SLAM proje
t and the SLAM toolkit; (2)dis
overing invariants regarding array bounds 
he
king andlist-manipulating 
ode.6.1 The SLAM Toolkit and its Appli
ation to NTDevi
e DriversThe goal of the SLAM proje
t is to automati
ally 
he
kthat a program respe
ts a set of temporal safety propertiesof the interfa
es it uses. Safety properties are the 
lass ofproperties that state that \something bad does not happen".An example is requiring that a lo
k is never released without
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�rst being a
quired (see [23℄ for a formal de�nition). Givena program and a safety property, we wish to either validatethat the 
ode respe
ts the property, or �nd an exe
utionpath that shows how the 
ode violates the property.Given a safety property to 
he
k on a C program, theSLAM pro
ess has the following phases: (1) abstra
tion,(2) model 
he
king, and (3) predi
ate dis
overy. We havedeveloped the SLAM toolkit to support ea
h of these phases:� C2bp, whi
h is the topi
 of this paper;� Bebop, a tool for model 
he
king boolean programs [5℄;� Newton, a tool that dis
overs additional predi
ates tore�ne the boolean program, by analyzing the feasibil-ity of paths in the C program (the subje
t of a futurepaper).The SLAM toolkit provides a fully automati
 way of 
he
k-ing temporal safety properties of system software. Viola-tions are reported by the SLAM toolkit as paths over theprogram P . The toolkit never reports spurious error paths.Instead, it dete
ts su
h paths and uses them to automati-
ally re�ne the boolean program abstra
tion (to eliminatethese paths from 
onsideration). Sin
e property 
he
king isunde
idable, the SLAM re�nement algorithm may not 
on-verge. In addition, it may terminate with a \don't know"answer due to the in
ompleteness of the underlying theoremprovers. However, in our experien
e, it usually 
onverges ina few iterations with a de�nite answer. One reason for thisis that the properties we 
he
ked are very 
ontrol-intensive,and have relatively simple dependen
ies on data.We ran the SLAM toolkit on four drivers from the Win-dows 2000 Driver Development Kit 5, as well as an internallydeveloped 
oppy devi
e driver, to 
he
k for proper usageof lo
ks and proper handling of interrupt request pa
kets(see [6℄ for the details of the properties 
he
ked). The de-vi
e drivers in the DDK are supposed to be exemplars forothers to base their devi
e drivers on. For the two propertieswe 
he
ked, the SLAM toolkit validated these drivers (i.e.,found no errors). For the 
oppy driver under development,the SLAM toolkit found an error in how interrupt requestpa
kets are handled.Table 1 shows the sizes of these drivers, the number ofpredi
ates in the predi
ate input �le, the number of theoremprover queries that C2bp made, and the run time for C2bp.For all these examples (and those of the next se
tion), Be-bop ran in under 10 se
onds on the boolean program outputby C2bp.6.2 Array Bounds Che
king and Heap InvariantsTable 2 shows the results of running C2bp on a set of toyillustrative examples. The program kmp is a Knuth-Morris-Pratt string mat
her and qsort is an array implementationof qui
ksort, both examples used by Ne
ula [26℄. The pro-gram partition is the list partition example from Figure 1,listfind is a list sear
h example, and reverse is an exam-ple that reverses a list twi
e. In most 
ases, the 
one-of-in
uen
e heuristi
s in C2bp were able to redu
e the numberof theorem prover 
alls to a manageable number. In the
ase of the reverse example, every pair of pointers 
ouldpotentially alias, and the 
one-of-in
uen
e heuristi
s 
ouldnot avoid the exponential number of 
alls to the theoremprover.5freely available from http://www.mi
rosoft.
om/ddk/

program lines predi
ates thm. prover runtime
alls (se
onds)kmp 75 4 286 7qsort 45 2 199 5partition 55 4 263 9list�nd 37 6 4412 172reverse 73 7 26769 747Table 2: The array and heap intensive programs analyzedwith C2bp.stru
t node {int mark;stru
t node *next;};void mark(stru
t node *list) {stru
t node *this, *tmp, *prev;prev = 0;this = list;/* traverse list and mark, setting ba
k pointers */while( this != 0 ) {if(this->mark==1)break;this->mark = 1;tmp = prev;prev = this;this = this->next;prev->next = tmp;}/* traverse ba
k, resetting the pointers */while( prev!=0 ){tmp = this;this = prev;prev = prev->next;this->next = tmp;}} Figure 3: List traversal using ba
k pointersIn our experiments, we were able to 
onstru
t useful in-variants in the 
ode by modeling only a few predi
ates thato

urred in the program. For example, in the array bounds
he
king examples (kmp and qsort), where an array a wasindexed in a loop by a variable index, we simply had tomodel the bounds index � 0 and index � length(a) in or-der to produ
e the appropriate loop invariant. We foundthat in most 
ases, the 
omponent predi
ates of the invari-ant were easy to guess by looking at the 
onditionals in theprograms.The list reversal example reverse is a simpli�ed versionof a mark-and-sweep garbage 
olle
tor. We show the pro-gram in Figure 3. In the �rst while loop, the list is traversedin the forward dire
tion, while maintaining ba
k pointers tothe previous nodes. In the se
ond loop, the pointers are re-versed to get the original list. We wish to verify that thepro
edure mark leaves the shape of the stru
ture un
hanged:i.e., for every node h in the list, h! next points to the samenode before and after the pro
edure mark. To 
he
k this, weintrodu
ed auxiliary variables h and hnext into the C 
ode.The variable h is 
hosen non-deterministi
ally to point atany (non-null) element of the list, and hnext is initialized
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with h->next. We input the following predi
ates to C2bp(along with the program of Figure 3):mark {h == 0,prev == h,this == h,this->next == hnext,prev == this,h->next == hnext,hnext->next == h}With this 
hoi
e of predi
ates, C2bp 
onstru
ts an abstra
tprogram whi
h is analyzed using Bebop. Bebop shows thatat the end of the mark pro
edure, h! next = hnext holds.7 Related WorkOur work is inspired by the predi
ate abstra
tion work ofGraf and Saidi [19℄. Predi
ate abstra
tion has been used inthe veri�
ation of 
a
he 
oheren
e proto
ols [13℄. However,these e�orts work at the spe
i�
ation level, on a languagewith guarded 
ommands. Doing predi
ate abstra
tion ona general-purpose programming language is the novel as-pe
t of our work. A method for 
onstru
ting abstra
t mod-els from Java programs has been developed in the Banderaproje
t [17℄. Their tool requires the user to provide �nite-domain abstra
tions of data types. Predi
ate abstra
tionas implemented in C2bp is more general, as it allows the�nite partitioning of a variable's possible values and addi-tionally allows relationships between variables to be de�ned.Another approa
h is to use ri
her type systems to model�nite-state abstra
tions of programs [14℄.Shape analysis [30℄ also uses a form of predi
ate abstra
-tion, where the predi
ate language is a �rst-order logi
 aug-mented with transitive 
losure. In 
ontrast, our predi
atesare quanti�er-free. Shape analysis requires the user to spe
-ify how ea
h statement a�e
ts ea
h predi
ate of interest,whereas the C2bp tool 
omputes the abstra
t transition sys-tem automati
ally using a theorem prover.Predi
ate abstra
tion is a general te
hnique that 
an beused to add predi
ate (read \path") sensitivity to programanalyses. Ammons and Larus use 
ode dupli
ation followedby a traditional data
ow analysis to a
hieve path-sensitiveresults [1℄. Bodik and Anik use symboli
 ba
k-substitution(i.e., weakest pre
onditions) followed by value numbering toimprove the results of a subsequent three-valued data
owanalysis [8℄. The 
ombination of predi
ate abstra
tion byC2bp and path-sensitive data
ow analyses in Bebop 
ouldbe used to a
hieve similar results.Prior work for generating loop invariants has used sym-boli
 exe
ution on the 
on
rete semanti
s, augmented withwidening heuristi
s [32, 33℄. The Houdini tool guessesa 
andidate set of annotations (invariants) and uses theESC/Java 
he
ker to refute in
onsistent annotations until
onvergen
e [18℄. In 
ontrast, the tools C2bp andBebop usea 
ombination of abstra
tion (from C program to booleanprogram) and iterative analysis of the abstra
ted C programto �nd loop invariants expressible as boolean fun
tions overa given set of predi
ates.8 Con
lusionsWe summarize our main 
ontributions:

� C2bp is the �rst predi
ate abstra
tion tool that workson a general-purpose programming language.� We have taken e�orts to handle features su
h as pro-
edures and pointers in a sound and pre
ise way.� We have explored several optimizations to redu
e thenumber of 
alls made to the theorem prover by C2bp.� We have demonstrated the use of C2bp on pro-grams from varying domains | devi
e drivers, array-manipulating programs, and pointer-manipulating pro-grams.Though we fully support pointers in C2bp, our predi-
ates are quanti�er-free. Stating 
ertain properties of un-bounded data stru
tures may require a more expressivelogi
. For this purpose, it would be interesting to enri
hthe predi
ate language with dependent types and re
ursivetypes. Among other things, the aliasing problem be
omesmore 
ompli
ated in this setting. For example, if T is a typethat denotes lists of even length, then the predi
ate (p 2 T )is true if p points to an obje
t of type T . Consider an as-signment of the form q->next = NULL. To update (p 2 T ),we have to 
onsider the possibility that q 
an point any-where inside the list pointed to by p.6 One way around thisdiÆ
ulty is to use linear types to en
ode that there are noexternal pointers to the list other than p. It would also beinteresting to investigate the use of predi
ates expressible insome re
ent pointer logi
s [29, 22℄.We have fo
used on predi
ate abstra
tion of single-threaded programs, and it would be interesting to extendC2bp to work for multi-threaded 
ode. Several issues needto be resolved here. First, one needs to establish an ap-propriate notion of atomi
ity of exe
ution. Next, while ab-stra
ting any statement one has to a

ount for the possibilityof interferen
e from another thread. Even if su
h an abstra
-tion were possible, model 
he
king boolean programs witheven two threads is unde
idable. One possible solution is tofurther abstra
t boolean programs to �nite-state ma
hines,and then use traditional model 
he
king algorithms to ex-plore interleaving exe
utions of the �nite-state ma
hines. Afurther problem is that in 
ertain situations, it is not possi-ble to know the number of threads in advan
e. If we wereto �rst abstra
t boolean programs to �nite-state ma
hines,then it is possible to use parameterized model 
he
king tohandle an arbitrary number of threads [2℄. It is not 
lear ifthese abstra
tions 
an be performed automati
ally.We have 
hosen C as our sour
e language for predi
ateabstra
tion. However, our fundamental 
ontribution is a setof te
hniques to handle pro
edure 
alls and pointers dur-ing predi
ate abstra
tion. The te
hniques in this paper 
anbe adapted to 
onstru
t predi
ate abstra
tions of programswritten in other imperative languages su
h as Java.We plan to improve some ineÆ
ien
ies we have in theimplementation. The theorem prover is 
urrently startedas a separate pro
ess ea
h time it is used, whi
h is veryineÆ
ient. A more fundamental issue is that we 
urrentlyuse theorem provers as bla
k boxes. We plan to investigate ifopening up the internals of the theorem prover 
an improvethe eÆ
ien
y of the abstra
tion pro
ess.Generating predi
ates for a predi
ate abstra
tion toollike C2bp is another open resear
h problem. We are 
ur-rently building a tool 
alled Newton in the SLAM toolkit to6We thank Frank Pfenning for this observation.
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generate predi
ates from the model 
he
ker's 
ounterexam-ples, using path simulation. We are also exploring predi
ategeneration using value 
ow analysis on the program, withrespe
t to the properties of interest. Our 
urrent approa
hseems to work as long as the properties of interest haverelatively simple dependen
ies on data. For data-intensiveproperties, predi
ate generation may have to use wideningheuristi
s as in [32, 33℄.A
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